2016 Hackaday prize hackaday electricity questions and answers pdf

[Sashi]’s PURE modules system wants your next wireless microcontroller and sensor module project to be put together using card-edge connectors. But it’s a lot deeper than that — PURE is an entire wireless gadget development ecosystem. Striking a balance between completeness and modularity is very difficult; a wire can carry any imaginable electronic signal, but just handing someone a pile of wires presents them a steep learning curve. PURE is at the other end of the spectrum: everything is specified.

So far, two microcontroller options are available in the system, the nRF52 series and TI’s CC2650. Both of these run the Contiki OS, so it doesn’t matter which of these you choose. Wired data is all transmitted over I2C and connects up via the previously-mentioned card-edge connectors. On the wireless side, data transport is handled through an MQTT broker, using the MQTT-sn variant which is better suited to small radio devices. At the protocol layer everything uses Protocol Buffers, Google’s newest idea for adding some structure to the data.

[Eric] at MkMe Lab has a dream: to build a cheap, portable system that provides the electronic infrastructure needed to educate kids anywhere in the world. He’s been working on the system for quite a while, and has recently managed to shrink the suitcase-sized system down to a cheaper, smaller form-factor.

The last time we discussed [Eric]’s EduCase project was as part of his Hackaday Prize 2016 entry. There was a lot of skepticism from our readers on the goals of the project, but whatever you think of [Eric]’s motivation, the fact remains that the build is pretty cool. The previous version of the EduCase relied on a Ku-band downlink to receive content from Outernet, and as such needed to stuff a large antenna into the box. That dictated a case in the carry-on luggage size range. The current EduCase is a much slimmed-down affair that relies on an L-band link from the Inmarsat satellites, with a much smaller patch antenna. A low-noise amp and SDR receiver complete the downlink, and a Raspberry Pi provides the UI. [Eric]’s build is just a prototype at this point, but we’re looking forward to seeing everything stuffed into that small Pelican case.

Dtto, a modular robot designed with search and rescue in mind, has just been named the winner of the 2016 Hackaday Prize. In addition to the prestige of the award, Dtto will receive the grand prize of $150,000 and a residency at the Supplyframe Design Lab in Pasadena, CA.

This year’s Hackaday Prize saw over 1,000 entires during five challenge rounds which asked people to Build Something that Matters. Let’s take a look at the projects that won the top five prizes. They exemplify the five challenge themes: Assistive Technologies, Automation, Citizen Scientist, Anything Goes, and Design Your Concept. Dtto — Explorer Modular Robot

Grand Prize Winner ($150,000 and a residency at the Supplyframe Design Lab): Dtto is modular robot built with 3D printed parts, servo motors, magnets, and readily available electronics. Each module consists of two boxes, rounded on one side, connected by a bar. The modules can join with each other in many different orientations using the attraction of the magnets. Sections can separate themselves using servo motors.

Dtto is groundbreaking in its ability to make modular robots experimentation available to roboticists and hobbiests everywhere by sidestepping what has traditionally been a high-cost undertaking. While it’s easy to dismiss this concept, the multitude of different mechanisms built from modules during testing drives home the power of the system.

The Hackaday Prize is the greatest hardware build-off on the planet, and with that comes some spectacular prizes. For the inaugural Hackaday Prize in 2014, the top prize was $196,418. That’s a handsome sum, and with that, the right hardware, and enough time, anything is possible.

The winners of the first Hackaday Prize was the SatNOGs project. The SatNOGs project itself is very innovative and very clever; it’s a global network of satellite ground stations for amateur cubesats. This, in itself, is a huge deal. If you’re part of a student team, non-profit, or other organization that operates a cubesat, you only have access to that satellite a few minutes every day — whenever it’s in the sky, basically. SatNOGs is a project to put directional, tracking antennas everywhere on Earth, all connected to the Internet. This is a project that gives global ground station coverage to every amateur-built cubesat.

It’s been two years since SatNOGs won the Hackaday Prize, so how are they doing now? I caught up with some of the midwest reps of SatNOGs at this year’s Hamvention, and the project is doing very well. The steerable antenna mount designed by the SatNOGs project is fantastic, some of the Earth stations are seeing a lot of use, and the network is growing.

The premier project for the Libre Space Foundation is the UPSat, the first Open Source satellite ever launched. For the last two years, this is what the Libre Space Foundation has been working on, and soon this satellite will be orbiting the Earth. The satellite itself was recently delivered, and next month it will be launched to the International Space Station aboard a Cygnus spacecraft. After that, it will be deployed to low Earth orbit from Nanoracks’ deployment platform on the station.

This is truly an amazing project. SatNOGs brought a network of ground stations to amateur cubesats orbiting the Earth, and now the Libre Space Foundation will put an Open Source satellite into low Earth orbit. All the documentation is available on Github, and this is the best the open hardware movement has to offer. We’re proud to have SatNOGs and the Libre Space Foundation proving that Open Hardware can change the world, and we can only hope this year’s winner of the Hackaday Prize has such an impact.