Baghouse – wikipedia 6 gas laws

In mechanical-shaker baghouses, tubular filter bags are fastened onto a cell plate at the bottom of the baghouse and suspended from horizontal beams at the top. Dirty gas enters the bottom of the baghouse and passes through the filter, and the dust collects on the inside surface of the bags.

Shaker baghouses range in size from small, handshaker devices to large, compartmentalized units. They can operate intermittently or continuously. Intermittent units can be used when processes operate on a batch basis-when a batch is completed, the baghouse can be cleaned. Continuous processes use compartmentalized baghouses; when one compartment is being cleaned, the airflow can be diverted to other compartments.

In reverse-air baghouses, the bags are fastened onto a cell plate at the bottom of the baghouse and suspended from an adjustable hanger frame at the top. Dirty gas flow normally enters the baghouse and passes through the bag from the inside, and the dust collects on the inside of the bags.

Reverse-air baghouses are compartmentalized to allow continuous operation. Before a cleaning cycle begins, filtration is stopped in the compartment to be cleaned. Bags are cleaned by injecting clean air into the dust collector in a reverse direction, which pressurizes the compartment. The pressure makes the bags collapse partially, causing the dust cake to crack and fall into the hopper below. At the end of the cleaning cycle, reverse airflow is discontinued, and the compartment is returned to the main stream.

In reverse-pulse-jet baghouses, individual bags are supported by a metal cage (filter cage), which is fastened onto a cell plate at the top of the baghouse. Dirty gas enters from the bottom of the baghouse and flows from outside to inside the bags. The metal cage prevents collapse of the bag.

Bags are cleaned by a short burst of compressed air injected through a common manifold over a row of bags. The compressed air is accelerated by a venturi nozzle mounted at the reverse-jet baghouse top of the bag. Since the duration of the compressed-air burst is short (0.1s), it acts as a rapidly moving air bubble, traveling through the entire length of the bag and causing the bag surfaces to flex. This flexing of the bags breaks the dust cake, and the dislodged dust falls into a storage hopper below.

Reverse-pulse-jet dust collectors can be operated continuously and cleaned without interruption of flow because the burst of compressed air is very small compared with the total volume of dusty air through the collector. On account of this continuous-cleaning feature, reverse-jet dust collectors are usually not compartmentalized.

The short cleaning cycle of reverse-jet collectors reduces recirculation and redeposit of dust. These collectors provide more complete cleaning and reconditioning of bags than shaker or reverse-air cleaning methods. Also, the continuous-cleaning feature allows them to operate at higher air-to-cloth ratios, so the space requirements are lower.

Some baghouses have sonic horns installed to provide supplementary vibration cleaning energy. The horns, which generate high intensity, low frequency sounds waves, are turned on just before or at the start of the cleaning cycle to help break the bonds between particles on the filter media surface and aid in dust removal. Cleaning sequences [ edit ]

Intermittently cleaned baghouses are composed of many compartments or sections. One at a time, each compartment is periodically closed off from the incoming dirty gas stream, cleaned, and then brought back online. While the individual compartment is out of place, the gas stream is diverted from the compartment’s area. This makes shutting down the production process unnecessary during cleaning cycles.

Continuously cleaned baghouse compartments are always online for automatic filtering. A blast of compressed air momentarily interrupts the collection process to clean the bag. This is known as pulse jet cleaning. Pulse jet cleaning does not require taking compartments offline. Continuously cleaned baghouses are designed to prevent complete shutdown during bag maintenance and failures to the primary system. Performance [ edit ]

Baghouse performance is contingent upon inlet and outlet gas temperature, pressure drop, opacity, and gas velocity. The chemical composition, moisture, acid dew point, and particle loading and size distribution of the gas stream are essential factors as well

• Opacity – Opacity measures the quantity of light scattering that occurs as a result of the particles in a gas stream. Opacity is not an exact measurement of the concentration of particles; however, it is a good indicator of the amount of dust leaving the baghouse.

• Gas Volumetric Flow Rate – Baghouses are created to accommodate a range of gas flows. An increase in gas flow rates causes an increase in operating pressure drop and air-to-cloth ratio. These increases require the baghouse to work more strenuously, resulting in more frequent cleanings and high particle velocity, two factors that shorten bag life.

• Pressure drop is the resistance to air flow across the baghouse. A high pressure drop corresponds with a higher resistance to airflow. Pressure drop is calculated by determining the difference in total pressure at two points, typically the inlet and outlet.

• An understanding of the term air-to-cloth ratio is vital to understand the mechanics of any baghouse system regardless of the exact type used. This ratio is defined as the amount of air or process gas entering the Baghouse divided by the sq. ft of cloth in the Baghouse. Units of measure are (ft3/min)/ft2 or (cm3/sec)/cm2.

Fabric filter bags (sometimes referred to as envelopes) are oval or round tubes, typically 15–30 feet and 5 to 12 inches in diameter, made of woven or felted material. [10] Depending on chemical and/or moisture content of the gas stream, its temperature, and other conditions, bags may be constructed out of cotton, nylon, polyester, fiberglass or other materials. [11]

Nonwoven materials are either felted or membrane. Nonwoven materials are attached to a woven backing (scrim). Felted filters contain randomly placed fibers supported by a woven backing material (scrim). In a membrane filter, a thin, porous membrane is bound to the scrim. High energy cleaning techniques such as pulse jet require felted fabrics.

Woven filters have a definite repeated pattern. Low energy cleaning methods such as shaking or reverse air allow for woven filters. Various weaving patterns such as plain weave, twill weave, or sateen weave, increase or decrease the amount of space between individual fibers. The size of the space affects the strength and permeability of the fabric. A tighter weave corresponds with low permeability and, therefore, more efficient capture of fine particles.

Reverse air bags have anti-collapse rings sewn into them to prevent pancaking when cleaning energy is applied. Pulse jet filter bags are supported by a metal cage, which keeps the fabric taut. To lengthen the life of filter bags, a thin layer of PTFE (teflon) membrane may be adhered to the filtering side of the fabric, keeping dust particles from becoming embedded in the filter media fibers. [12]