Centrale nucléaire de fukushima daiichi — wikipédia harry mileaf electricity 1 7 pdf

##############

Vue schématique d’un réacteur à eau bouillante (REB) Mark I tels que sont les réacteurs n o 1 à 5 de la centrale gas jet size chart de Fukushima I. Ce sont des réacteurs en acier spécial, à enceinte de confinement en béton et à piscine de condensation en acier de forme torique (structure en anneau sous le réacteur, WW). C’est la partie haute du bâtiment qui a été soufflée par l’explosion due à la formation d’hydrogène. La piscine d’entreposage ( SFP [Note 3 ]) se trouve en haut, hors de l’enceinte de confinement. La partie haute de l’enceinte de confinement (SCSW) peut être démontée pour permettre le transfert du combustible sous eau.

Chaque réacteur contient une cuve d’acier étanche, épaisse de 16 centimètres, qui enferme un ensemble de tubes d’alliage de zirconium (dits « crayons ») verticaux parallèles remplis d’ uranium enrichi, le combustible nucléaire radioactif. Cette partie est appelée le cœur du réacteur. Chaque tube, d’environ 4 mètres de long, contient un empilement d’environ 360 pastilles de combustible ici sous forme de céramique [18 ]. À titre de comparaison, une pastille de 7 grammes peut libérer autant d’ énergie qu’une tonne de charbon [19 ].

Certains noyaux des atomes composant le combustible sont fissionnés quand ils sont electricity and magnetism purcell frappés par des neutrons. Cette réaction nucléaire dégage une forte énergie et libère elle-même des neutrons entretenant ainsi une réaction en chaîne tant que les conditions nécessaires sont réunies. Quand le réacteur fonctionne, de l’eau circule dans la cuve ; elle est chauffée et transformée en vapeur au contact des crayons de combustible nucléaire [Note 4 ].

Pour maîtriser la réaction en chaîne, on utilise des grappes de barres mobiles verticales (généralement appelées « barres de contrôle gas calculator ») qui ont la propriété d’absorber les neutrons. Dans un REB, elles sont situées en dessous du cœur et doivent être soulevées pour ralentir la réaction. Leur remontée totale dans le cœur, en cas d’urgence par exemple, permet d’arrêter totalement la réaction en chaîne.

Dans le cas des réacteurs de la centrale de Fukushima I, l’enceinte de confinement en béton entourant la cuve est en communication via des tuyauteries de fort diamètre avec un tore placé en partie inférieure et contenant de l’eau froide et réfrigérée par un circuit externe dans laquelle les dites tuyauteries plongent. Ce système dit « de barbotage » permet de condenser la vapeur éventuellement présente dans le compartiment entourant la cuve du réacteur de façon à prévenir une augmentation excessive de pression. La réserve d’eau de barbotage sert gas definition science également à condenser la décharge des soupapes de sûreté placées en amont des vannes d’isolement vapeur [20 ], vannes qui doivent se fermer à la demande, en 3 à 5 secondes en cas de nécessité [21 ]. Les éventuelles « décharges » de gaz ou de vapeur destinées à décomprimer l’enceinte de confinement sont faites grâce à une (ou plusieurs) lignes d’évents du tore de barbotage.

Les installations comportent en outre des bassins remplis d’eau (appelés « piscines ») destinés à l’entreposage à long terme des éléments combustibles usés déchargés des réacteurs, en vue de leur refroidissement. Dans ces piscines, la puissance thermique résiduelle des éléments combustibles décroît durant des durées electricity laws uk variables jusqu’à rendre possible leur évacuation vers les centres de retraitement ou de stockage. Ces derniers s’effectuent en conteneur blindé sous air maintenu en légère dépression.

L’enveloppe du cœur du réacteur n o 3 a été changée à la fin des années 1990, de même que static electricity review worksheet d’autres composants principaux internes en acier inoxydable du type 304 (norme AISI-SAE) qui ont été remplacés par des pièces en acier inoxydable du type 316 L à plus faible teneur en carbone et plus forte teneur en nickel pour diminuer la corrosion intergranulaire des métaux du cœur du réacteur (IGSCC) [23 ].

Un scandale qui éclate en 2002 révèle que TEPCO a, durant les années 1980 et 1990, falsifié une trentaine de rapports d’inspection constatant des fissures ou des corrosions sur les enveloppes des réacteurs dont ceux de la centrale de Fukushima. La direction de TEPCO doit démissionner et plusieurs réacteurs sont alors fermés [25 ] , [26 ]. En 2007, on apprend que TEPCO a en fait dissimulé 199 incidents entre 1984 et 2002 [27 ].

Dans un rapport remis le 28 février 2011 à l’ Agence japonaise de sûreté nucléaire, TEPCO admet avoir de nouveau falsifié plusieurs rapports d’inspection: elle n’a en réalité pas contrôlé trente-trois éléments des six réacteurs de Fukushima-Daiichi. Parmi ceux-ci figurent un moteur et un générateur électrique d’appoint pour le réacteur n o 1, ainsi qu’un tableau électrique qui n’avait pas été vérifié depuis 11 ans [28 ] , [29 ] , [30 ].

Le 31 mars gas tax in ct, le Wall Street Journal révèle que les plans de gestion d’urgence de TEPCO, quoique conformes à la législation japonaise, ne correspondent qu’à des incidents mineurs, ce qui n’a pas permis à l’opérateur de réagir efficacement durant les premiers jours de la crise. Interrogé electricity names superheroes sur cette question, un porte-parole de l’Agence japonaise de sûreté nucléaire déclare : « Nous sommes douloureusement conscients que ces plans étaient insuffisants » [31 ] , [32 ].

Après l’irradiation de trois sous-traitants le 24 mars, l’Agence japonaise de sûreté nucléaire notifie immédiatement à l’opérateur de revoir ses mesures de radioprotection sur le site [33 ]. Malgré cela la chaîne de télévision japonaise NHK révèle le 31 mars que la dosimétrie des travailleurs sur le site n’est pas précisément suivie car TEPCO n’a plus assez de dosimètres. Cela déclenche des réactions furieuses de la part des autorités japonaises [34 ].

Le 29 décembre 2011, NHK World révèle que les générateurs de secours, tombés en panne lors de l’ accident nucléaire de Fukushima, avaient déjà subi une inondation 20 ans plus tôt à la suite d’une fuite d’eau. À cette occasion, deux des générateurs de secours étaient tombés en panne. Malgré cet incident, TEPCO avait seulement fait installer des portes étanches mais n’avait cependant pas déménagé electricity equations physics en hauteur ces générateurs [35 ].

En mars 2007, la centrale nucléaire de Shika (exploitée par la Compagnie d’Électricité Hokuriku) fut secouée lors d’un tremblement de terre imprévu. En juillet, un autre séisme provoqua un incendie (et des fuites radioactives limitées) à la centrale de Kashiwazaki-Kariwa (exploitée par TEPCO). Ces problèmes provoquent au Japon une controverse sur le risque nucléaire en cas de tremblement de terre : « Le 25 mars, la centrale de Shika, exploitée par la Hokuriku Electric Power Co., a été affectée par un tremblement de terre qui n’était pas supposé pouvoir arriver. » [36 ] Les défaillances electricity in india de l’ Agence japonaise de sûreté nucléaire, des exploitants japonais en général, et de TEPCO en particulier sont pointées du doigt [37 ].

Un comité d’experts est alors chargé de revoir les normes anti-sismiques. En août 2007, Katsuhiko Ishibashi, un sismologue japonais réputé, démissionne de ce comité : pour lui, les nouvelles normes ne sont pas assez strictes et ne garantiront pas la sûreté. Il écrit alors : « À moins de prendre des mesures radicales pour réduire la vulnérabilité des centrales nucléaires en cas de séisme, le Japon pourrait subir une réelle gas 47 cents catastrophe nucléaire dans un proche avenir » [39 ] , [40 ].

Selon The Daily Telegraph, un document communiqué par WikiLeaks montrerait qu’un expert de l’ Agence internationale de l’énergie atomique (AIEA) a en décembre 2008 averti le Japon du caractère obsolète de ses critères de sécurité ; les réacteurs japonais, dont ceux de Fukushima, ne pouvant résister au maximum qu’à des séismes de magnitude 7 (le séisme du 11 mars 2011 était de magnitude 9). Plutôt que de contraindre les exploitants à renforcer leurs installations, le gouvernement japonais réagit en mettant sur pied un centre de réponse aux urgences sur le site de Fukushima [41 ] , [42 ].

Lorsque la construction de la centrale nucléaire commence en 1967, l’estimation retenue v gashi 2012 pour la hauteur potentielle maximale d’un tsunami sur le site dépasse à peine trois mètres [43 ]. Les autorités de TEPCO indiqueront plus tard que le mur de protection à Fukushima était conçu pour résister à des tsunamis déclenchant des vagues hautes de 5,7 mètres [ réf. souhaitée].

Les connaissances scientifiques évoluent, et dans un rapport publié en juillet 2002, une commission publique de sismologues estime à 20 % la probabilité qu’un tremblement de terre de magnitude 8 déclenche un redoutable tsunami au large du littoral au cours des trois décennies suivantes. L’ Agence de sûreté nucléaire et industrielle demande alors à TEPCO d’effectuer une simulation de tsunami pour Fukushima Daiichi et d’autres centrales, mais TEPCO refuse jusqu’en 2008. La conclusion de sa simulation est alors qu’un tsunami consécutif à un fort séisme atteindrait une hauteur de 15,7 mètres, suffisante pour inonder la centrale. Pourtant, TEPCO ne fait rien pour réduire le risque, et attend le début d’année 2011 pour informer l’ASNI des conclusions de l’étude [43 ]. En mars 2011, les vagues atteignent la hauteur de 14 mètres du fait de leur z gas guatemala énergie cinétique.