Clean energy technologies threaten to overwhelm the grid. here’s how it can adapt. – millennial new world gas definition chemistry

#########

But according to Lorenzo Kristov, the rise of new energy technologies should occasion a step back and a fresh, holistic perspective — not just a reactive scramble on policy. Now in private practice as an energy consultant, Kristov saw the challenges facing the grid up close as a longtime principal at the California Independent System Operator (CAISO), which runs California’s electricity grid.

Now, I grant you, “grid architecture” is not a term designed to set the heart aflame. But it is extremely important, and the stakes are high. The danger is that policymakers will back into the future, reacting to one electricity crisis at a time, until the growing complexity of the grid tips it over into some kind of breakdown. But if they think and act proactively, they can get ahead of the burgeoning changes and design a system that harnesses and accelerates them.

The Pacific Northwest National Laboratory has a grid architecture center that offers some semi-useful definitions. A system architecture is “the conceptual model that defines the structure, behavior, and essential limits of a system.” Grid architecture is “the application of system architecture, network theory, and control theory to the electric power grid.”

Yes, I realize that’s not entirely clear. Think of it this way: Grid architecture offers the conceptual tools needed to reshape the structure of the grid system so that it can better accommodate disruptive ongoing changes, i.e., the shift from centralized power plants and one-way power flows to massive amounts of small-scale resources at the edge of the grid.

If nothing else, I hope to convince you that changing the way we architect the grid is a key step — perhaps the key step — in unlocking the full potential of the clean energy technologies that will be needed to decarbonize the electricity sector and meet new demand coming from electrification of other energy-intensive sectors like transportation and buildings.

Since it first started growing in earnest in the early 20th century, the grid has worked according to the same basic model. Power is generated at large power plants and fed into high-voltage transmission lines, which can carry it over long distances. u gas station near me At various points along the way, power is dumped from the transmission system into local distribution areas (LDAs) via substations, where transformers lower the voltage so it won’t fry the locals.

Distribution wires carry power from these transmission-distribution (TD) interfaces in various directions to end users. The voltage is lowered again by transformers on power poles, and then the power is fed into buildings through meters that keep track of consumption. Once it is “behind the meter,” it is used by computers and dishwashers and iPhone chargers.

One notable feature of this model is that power travels in only one direction, which is why hydrological metaphors are so popular in grid explainers. electricity generation definition Transmission lines are like mighty rivers that feed into urban water distribution systems, where the water/power travels to the end of the line and is consumed. At no point does water travel back up the line.

While the US transmission system acts as a true network — it is highly interlinked, so power can travel throughout to where it is needed — the “distribution feeders” that pump power into LDAs do not. Distribution feeders are generally “radial” in design, meaning power travels from the substation out along tendrils to end users, in one direction. (There are also other distribution feeder designs, wherein an LDA is linked up to two or more substations, but those are less common, so we’re going to keep it simple.)

The transmission network is managed by, depending on the region, an independent system operator (ISO), a regional transmission organization (RTO), or an electric utility that is not a member of an ISO or RTO. (All of these are versions of transmission system operators — TSOs, the generic term popular in Europe — so for the rest of this post, and in the illustrations, I’ll use that term.)

Because transmission crosses state lines, TSOs are under federal jurisdiction. Specifically, they must follow rules established by the Federal Energy Regulatory Commission (FERC). FERC is responsible for the reliability of the transmission grid, with help from the North American Electric Reliability Corporation (NERC), a nonprofit public-benefit corporation that analyzes grid reliability and enforces reliability standards.

In some regions, utilities are still “vertically integrated,” meaning they own power plants and are also “load serving entities” (LSEs), distributing power locally. But in areas serving about two-thirds of US customers, the utility sector has been “restructured,” splitting the two apart. (This post mostly focuses on restructured areas, though it applies beyond them as well.)

Distribution systems, because they generally do not cross state lines, are under state jurisdiction. They are the responsibility of power utilities, the state public utility commissions (PUCs) that oversee utilities, and the state legislators who pass laws utilities have to follow. (Municipal utilities and electric cooperatives also operate distribution systems, subject to local governing bodies rather than state commissions.) These utilities are responsible for the reliability of distribution systems. They act as distribution system operators (DSOs).

This vastly increases the complexity of matching supply to demand in real time, and creates an urgent need for flexibility. gas apple pay A grid with lots of renewables badly needs resources that can ramp up and down or otherwise compensate for their natural variations. Integrating high levels of variable renewables is already creating challenges for grids like California’s.

Some DERs store energy, like batteries, fuel cells, or thermal storage like water heaters. And some DERs monitor and manage energy, like smart thermostats, smart meters, smart chargers, and whole-building energy management systems. (The oldest and still most common DER is diesel generators, which are obviously not ideal from a climate standpoint.)

DERs are sometimes known as “ grid edge” technologies because they exist at the bottom edge of the grid, near or behind customer meters. They are rapidly growing in variety, sophistication, and cumulative scale, and as they do, they unlock opportunities to stitch together more locally sufficient energy networks — if grids can handle them. (More on that later.)

The third trend is the increasing sophistication and declining cost of information and communication technology (ICT). a gas station near me As sensors and processors continue to get cheaper, it is increasingly possible to see exactly what is going on in a distribution grid down to the individual device, and to share that knowledge in real-time over the web. More information can be generated, and with artificial intelligence and machine learning, information and energy can both be more intelligently managed.

The second problem is simply complexity. DERs are still at a fairly nascent level of development, but they are set to explode in coming years, as rooftop panels, electric vehicles, home batteries, and smart meters become more common. Soon there will be all kinds of combinations and aggregations, at all levels, across every one of hundreds of LDAs.

That’s going to be a lot for a TSO to track — a thicket of new rules, new enforcement mechanisms, and sheer computational bulk. “Under this model,” Kristov, De Martini, and Taft write, “the TSO needs detailed information and visibility into all levels of the system, from the balancing authority area [i.e., the TSO level] down through the distribution system to the meters on end-use customers and distribution-connected devices.”

Kristov, De Martini, and Taft take no stand in the paper on whether the Grand Central model is possible, but when I asked De Martini directly, he was frank. “I don’t think the grand centralization model will work at scale,” he said, “as there are too many dynamic, random variables [in distribution systems] involving both machines and humans.”

“As I think about a TSO trying to have full awareness of what’s going on in a distribution system, bringing that together in a simultaneous optimization with the transmission grid, it just doesn’t make sense,” Kristov told me. “It seems needlessly complex. But if you don’t have that, then you need the DSO to step up to some higher-level responsibilities.”

In the Grand Central model, the TSO optimizes everything in one place, not only power plants at the transmission level, but thousands of DERs and aggregations at the distribution level, in service of wholesale markets and transmission system reliability, while having sufficient real-time visibility into the distribution system to avoid conflicts with local reliability needs.

Remember tier bypassing? The LDO model would prevent that by effectively sealing the layers off from one another, except at their electrical interface points. The only point of communication and coordination between the transmission layer and the distribution layer beneath it would be at the TD interface (the substations). Everything below the TD interface would be managed and optimized by the DSO.

Every grid architecture must have a “coordination framework” that assigns basic roles and responsibilities to various components of the system. The LDO architecture is a “maximum DSO” or “total DSO” model, in that it assigns substantial new roles and responsibilities to DSOs, well beyond those assigned to them by the current system. (We’ll talk more about that in a moment.) An architecture that scales all the way down

But there could be another layer beneath that first distribution layer. And it could communicate with that first distribution layer the same way the first distribution layer communicates with the transmission layer, i.e., through a single interface. Responsibilities would decompose downward again — the second layer would be responsible for its own optimization and reliability.

For instance, imagine a local microgrid that links together dozens of buildings, solar panels, combined heat-and-power (CHP) units, batteries, EV charging stations, and perhaps even a few smaller microgrids into a single network (a university campus, say). electricity merit badge worksheet That network can island off from the larger grid and run on its own, at least for a limited time, if there is a blackout.

This helps tame the problem of rapidly increasing complexity in the electricity sector. Whereas in the Grand Central model, the TSO will have to single-handedly keep track of all the blooming and buzzing DERs beneath it — which, let’s be serious, will eventually overwhelm it — in the LDO model, each layer is its own, tractable domain. Layered grid architecture faces substantial real-world obstacles

Among other things, local distribution utilities would need to be beefed up considerably to become maximum DSOs. In the LDO architecture, Kristov, De Martini, and Taft write, DSOs “would have to provide an open-access distribution-level market that would aggregate DER offers to the wholesale market, obtain services from qualified DER to support distribution system operations, and enable peer-to-peer transactions within a given LDA and potentially even across LDAs.”

First, nothing about the LDO architecture implies that it is bad for a level to request power from the level above it, or bad for LDAs to request power from the transmission grid. gas and bloating pain Most levels and most LDAs, especially in these early days of DERs, are far from fully self-sufficient and will be for some time. They will need transmission-grid power. Many always will.

And that’s fine. The limits of energy self-sufficiency are not moral failings, they are a matter of local climate, population density, and engineering. Different communities will value self-sufficiency differently. Some will seek independence to every extent possible, perhaps even becoming net producers that sell into wholesale power markets. Some will be content to get most of their power from the transmission grid. All will have their choices shaped by local conditions and limitations.

“A lot of things we consider electrification and decarbonization are going to play out through local planning,” Kristov says, “whether it’s rethinking mobility in urban areas or retrofitting buildings, these are local initiatives that will create local jobs. So you start having local economic development as a consequence of this decentralization.”

It would also spark a surge of energy innovation. Right now, thanks to outdated regulatory models, utilities are often hostile toward DERs, which are increasingly able to substitute for grid infrastructure. power quiz questions Anything that reduces utilities’ need to invest in more infrastructure threatens their financial returns. Consequently, they often show exactly as much support for DERs as is mandated by legislators, and no more.

In the LDO model, DSOs wouldn’t make money off infrastructure investments and they wouldn’t own DERs. They would make money by providing services. Each DSO would run what is effectively a distribution-level market within its own LDA. DERs would bid their energy and services in, local supply and demand would be matched to the extent possible, and the DSO would submit the remainder as a single wholesale-market purchase (if there’s residual demand) or bid (if there’s residual supply) at the TD interface.