Climate change indicators greenhouse gases climate change indicators in the united states us epa electricity facts label

################

As greenhouse gas emissions from human activities increase, they build up in the atmosphere and warm the climate, leading to many other changes around the world—in the atmosphere, on land, and in the oceans. The indicators in other chapters of this report illustrate many of these changes. These changes have both positive and negative effects on people, society, and the environment—including plants and animals. Because many of the major greenhouse gases stay in the atmosphere for tens to hundreds of years after being released, their warming effects on the climate persist over a long time and can therefore affect both present electricity labs high school and future generations.

• U.S. Greenhouse Gas Emissions. In the United States, greenhouse gas emissions caused by human activities increased by 7 percent from 1990 to 2014. Since 2005 gasbuddy near me, however, total U.S. greenhouse gas emissions have decreased by 7 percent. Carbon dioxide accounts for most of the nation’s emissions and most of the increase since 1990. Electricity generation is the largest source of greenhouse gas emissions in the United States, followed by transportation. Emissions per person have decreased slightly in the last few years.

• Sources of Data on U.S. Greenhouse Gas Emissions. EPA has two key programs that provide data on greenhouse gas emissions in the United States: the Inventory of U.S. Greenhouse Gas Emissions and Sinks and the Greenhouse Gas Reporting Program. The programs are complementary, providing both a higher-level perspective on the nation’s total emissions and detailed information about the sources and types of emissions from individual facilities.

• Global Greenhouse Gas Emissions. Worldwide, net emissions of greenhouse gases from human activities increased by 35 percent from 1990 to 2010. Emissions of carbon dioxide, which account for about three-fourths of total emissions, increased by 42 percent over this period. As with the United States, the majority of the world’s emissions result from electricity generation, transportation, and other forms of energy production and use.

• Atmospheric Concentrations of Greenhouse Gases. Concentrations of carbon dioxide and other greenhouse gases gas national average 2009 in the atmosphere have increased since the beginning of the industrial era. Almost all of this increase is attributable to human activities. 2 Historical measurements show that the current global atmospheric concentrations of carbon dioxide are unprecedented compared with the past 800,000 years, even gas density units after accounting for natural fluctuations.

• Climate Forcing. Climate forcing refers to a change in the Earth’s energy balance, leading to either a warming or cooling effect over time. An increase in the atmospheric concentrations of greenhouse gases produces a positive climate forcing, or warming effect. From 1990 to 2015, the total warming effect from greenhouse gases added by humans to the Earth’s atmosphere increased by 37 percent. The warming effect associated with carbon dioxide alone increased by 30 percent.

A group of gases that contain fluorine, including hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, among other chemicals. These gases are emitted from a variety of industrial processes and commercial and household uses and do not occur naturally. Sometimes used as substitutes for ozone-depleting substances such as chlorofluorocarbons (CFCs).

* Carbon dioxide’s lifetime cannot be represented with a single value because the gas is not destroyed over time, but instead moves among different parts of the ocean–atmosphere gas in stomach–land system. Some of the excess carbon dioxide is absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments.

EPA has two key programs that provide data on greenhouse gas emissions in the United States: the Inventory of U.S. Greenhouse Gas Emissions and Sinks and the Greenhouse Gas Reporting Program. The programs are complementary, providing both a higher-level perspective on the nation’s total emissions and detailed information about the sources and types of emissions from individual facilities. The data in EPA’s U.S. Greenhouse Gas Emissions indicator come from the national inventory. EPA’s Inventory of Greenhouse Gas Emissions and Sinks

EPA develops an annual report called the Inventory of U.S. Greenhouse Gas Emissions and Sinks (or the GHG Inventory). This report tracks trends in total annual U.S. emissions by source (or sink), economic sector, and greenhouse gas going back to 1990. EPA uses national energy data, data on national agricultural activities, and other national statistics to provide a comprehensive accounting of total greenhouse gas emissions for all man-made sources in the gas weed strain United States. This inventory fulfills the nation’s obligation to provide an annual emissions report under the United Nations Framework Convention on Climate Change.

EPA’s Greenhouse Gas Reporting Program collects annual emissions data from industrial sources that directly emit large amounts of greenhouse gases. Generally, facilities that emit more than 25,000 metric tons of carbon dioxide equivalents per year are required to report. The gas in oil car program also collects data from entities known as suppliers that supply certain fossil fuels and industrial gases that will emit greenhouse gases into the atmosphere if burned or released—for example, refineries that supply petroleum products such as gasoline. The Greenhouse Gas Reporting Program only requires reporting; it is not an emissions control program. This program helps EPA and the public understand where greenhouse gas emissions are coming from, and will improve our ability to make informed policy, business, and regulatory decisions.