## Constructing a topographic profile gsa 2016 new orleans

Other parts of this resource on graphing take you through plotting points and constructing a straight line through data points. If you aren’t sure how to plot points on a graph, please make sure you visit electricity word search pdf and work through the plotting points tutorial before moving on with this part of the graphing pages. This page is geared toward thinking about the shape of landscapes and pretty unique to geoscience courses. There are other instances in mathematics and graphing where a smooth curve is necessary (e.g., exponential curves, sine waves, etc.); this page is focused on a specific instance when you will construct a topographic profile from a two dimensional map.

When working data with topographic maps, topographic profiles and their construction, we often ask you to connect data points with a smooth curve. In such instances, you will be asked to plot some points and connect them with a smooth line. This is different from the plotting of a best fit line because it involves extrapolation of information from spatial data. In the case of constructing a topographic map, you must extrapolate the placement of the appropriate elevation contour. For topographic profiles, you must extrapolate the contour of the landscape (that is, whether it goes up or down) when faced with repeating elevation contours. When should I construct a profile?

In introductory geoscience courses, a profile is appropriate when you are asked to construct a cross-section or profile. Topographic profiles are used to understand what a topographic map is telling you in a specific area (or, you can think about it like it is giving you a side view of the landscape along a specific line on the map). Interestingly, many geologists are quite visual and like to have visual representations of data. Because maps are two-dimensional but represent three dimensions (that is, topgraphic maps are flat with lines that represent hills and valleys). Professional geologists use exercises such as the ones you gas exchange in the lungs will practice with below to help you (and us) visualize a two dimensional cross-section of what the land surface looks like (from the side) – giving you a slice of the third dimension. In other words, profiles help you to understand what a topographic map is telling us about hills and valleys along a particular line.

How do I construct a topographic profile? Examine the topographic map image to the left (you can click on the image to make it larger or you can download the map and a profile (Acrobat (PDF) 2.3MB Jul18 11) to try the steps below on your own). Before you start, you might want to review some of the rules about topographic bp gas prices ny maps before continuing (you can find rules at Idaho State U.’s field exercise, U. of Montana labs and U. of Memphis Topo Lab).

To construct a topographic profile, you need to find a line on a map that is interesting. In many cases, this line is given to you (often labeled something like A-A’ or A-B). The line should go through some part of the map that you are interested in, so that you get useful information. The following list provides some guidelines for effectively constructing a topographic profile and uses the topographic map and profile line provided to the left (you can download a pdf of the map and profile to work from (Acrobat (PDF) 2.3MB Jul18 11)):

• Although the hill tops have two repeating contour lines, we do not connect the hill tops or valleys gas out with straight lines across at the same elevation. Because there is space between them the land surface must go up or down. How much? Well, depending on the contour interval, we can make an estimation. The top of the hill cannot be higher than the next elevation marked by a topographic line. For example, on the figure above, the 40 ft contour is repeated at the top of the left hill, the profile shows the elevation going above 40 ft but not all the way to 50 ft. (the next contour line). Similarly, in the valley between the two hills, the 30 ft contour is repeated. Note that the valley floor goes below 30 ft but not all the way to 20 ft.

• A general rule of thumb is that slopes to the tops of hills will mimic the slope below (that is if they are rising gradually, it is pretty unlikely that they will suddenly dramatically change (in just a few feet). Thus, you can continue the slope on either side of the hilltop or valley until the two intersect (curve it just a little there).

Other parts of this resource on graphing take you through plotting points and constructing a straight line through gas and supply shreveport data points. If you aren’t sure how to plot points on a graph, please make sure you visit and work through the plotting points tutorial before moving on with this part of the graphing pages. This page is geared toward thinking about the shape of landscapes and pretty unique to geoscience courses. There are other instances in mathematics and graphing where a smooth curve is necessary (e.g., exponential curves, sine waves, etc.); this page is focused on a specific instance when you will construct a topographic profile from a two dimensional map.

When working data with topographic maps, topographic profiles and their construction, we often ask you to connect data points with a smooth curve. In such instances, you will be asked to plot some points and connect them with a smooth line. This is different from the plotting of a best fit line because it involves extrapolation of information from spatial data. In the case of constructing a topographic map, you must extrapolate the placement of the appropriate elevation contour. For topographic profiles, you must extrapolate the contour of the landscape (that is, whether it goes up or down) when faced with repeating elevation contours. When should I construct a profile?

In introductory geoscience courses, a profile is appropriate when you are asked to construct a cross-section or profile. Topographic profiles are used to understand what a topographic map is telling you in a specific area (or, you can think about it like it is giving you a side view of the landscape along a specific eon gas card top up line on the map). Interestingly, many geologists are quite visual and like to have visual representations of data. Because maps are two-dimensional but represent three dimensions (that is, topgraphic maps are flat with lines that represent hills and valleys). Professional geologists use exercises such as the ones you will practice with below to help you (and us) visualize a two dimensional cross-section of what the land surface looks like (from the side) – giving you a slice of the third dimension. In other words, profiles help you to understand what a topographic map is telling us about hills and valleys along a particular line.

How do I construct a topographic profile? Examine the topographic map image to the left (you can click on the image to make it larger or you can download the map and a profile (Acrobat (PDF) 2.3MB Jul18 11) to try the steps below on your own). Before you start, you might want to review some of the rules about topographic maps before continuing (you can find rules at Idaho State U.’s field exercise, U. of Montana labs and U. of Memphis Topo Lab).

To construct a topographic profile, you need to find a line on a map that is interesting. In many cases, this line is given to you (often labeled something like A-A’ or A-B). The line should go through some part of the map that you are interested in, so that you get useful information. The following list provides some guidelines for effectively constructing a topographic profile grade 9 electricity unit test answers and uses the topographic map and profile line provided to the left (you can download a pdf of the map and profile to work from (Acrobat (PDF) 2.3MB Jul18 11)):

• Although the hill tops have two repeating contour lines, we do not connect the hill tops or valleys with straight lines across at the same elevation. Because there is space between them the land surface must go up or down gas efficient cars 2010. How much? Well, depending on the contour interval, we can make an estimation. The top of the hill cannot be higher than the next elevation marked by a topographic line. For example, on the figure above, the 40 ft contour is repeated at the top of the left hill, the profile shows the elevation going above 40 ft but not all the way to 50 ft. (the next contour line). Similarly, in the valley between the two hills, the 30 ft contour is repeated. Note that the valley floor goes below 30 ft but not all the way to 20 ft.

• A general rule of thumb is that slopes to the tops of hills will mimic the slope below (that is if they are rising gradually, it is pretty unlikely that they will suddenly dramatically change (in just a few feet). Thus, you can continue the slope on either side of the hilltop or valley until the two intersect (curve it just a little there).