Définition — wikipédia electricity in india travel

####

Selon les Définitions du pseudo-Platon, la définition est la « proposition comportant différence spécifique et genre ». Aristote, dans le Topiques, définit le mot comme « formule qui exprime l’essentiel de l’essence d’un sujet » [1 ] , [2 ] Mathématiques [ modifier | modifier le code ]

Une définition est une formule qui indique la signification d’un terme. Une définition pose une équivalence entre un terme ( signifiant) et un sens ( signifié). Elle autorise à remplacer le second par le premier et revêt ainsi une utilité pratique. Elle est également le résultat d’une opération, et introduit donc le temps (le sens défini est fini, passé, en-soi), ainsi qu’un acteur (souvent implicite).

La définition s’inscrit dans l’ordre de la dénotation, mais un terme connote également des sens, et ce sans faire explicitement appel au temps ou à un acteur. Il le fait grâce à une structure externe de l’espace des signifiants, mais il existe également une structure interne qui s’exprime à travers l’ étymologie. Le concept de définition ne s’impose pas de lui-même, c’est un outil utile, mais pas indifférent : il s’inscrit dans une totalité structurée. Il implique et il indique des choix : Quels acteurs sert-elle ?

La définition établit une frontière entre le mot défini, et les mots utilisés pour l’expliciter. Elle établit ainsi une structure ordonnée, une arborescence par niveaux entre des classes de mots. On voit bien que cette structure est pourtant locale, que cet ordre ne se conserve pas si on déroule la structure de proche en proche. La problématique de définir la définition [ modifier | modifier le code ]

Selon Lalande dans son Dictionnaire critique, « Une définition est la détermination des limites de l’extension d’un concept » Plus profondément, la définition expose en un discours articulé (composé au minimum de deux mots) la compréhension d’un concept. Dire qu’un animal est un vivant doué de connaissance sensible, par exemple, c’est articuler entre elles deux notions ( vivant et doué de connaissance sensible) qui entrent dans la constitution et qui permettent de saisir la nature d’une troisième ( animal).

Il y a évidemment un cercle à définir le concept de définition : la tentative même suppose le problème résolu, et semble nier l’intérêt de la démarche (pourquoi définir définition si par là-même on suppose la définition connue ?). C’est ce que la philosophie anglo-saxonne appelle un point aveugle de la raison.

Ainsi la définition proposée ci-dessus du mot définition emploie elle-même d’autres mots, dont on suppose qu’ils ont eux-mêmes une définition. Mais le problème est d’abord celui du sens : comment peut-on appréhender le sens des mots ? La réponse varie considérablement d’un auteur à l’autre. Par exemple, pour Platon, le sens est immuable, et il sert de fondement à notre connaissance ; pour Quine, en revanche, le sens est indéterminé, et dépend toujours d’un ensemble de théories et de concepts.

Dans l’exemple cité, l’auteur subordonne la définition au concept, à son extension et à sa détermination. Le paradoxe créé, demandera-t-on, n’est-il pas un mouvement dialectique de la pensée ? Sans doute, si cette pensée est action, et revendiquée en tant que telle, mais non pas si elle est résultat. Une vérité immanente qui contiendrait des paradoxes n’est qu’une négation de la raison, une base pour le réenchantement du monde que dénonce Max Weber. Mais une dénonciation s’appuie sans doute elle-même sur une vérité immanente, à moins de prétendre à une perspective transcendante. On peut alors en venir à une forme de relativisme (cf. scepticisme ou post-modernisme), à défaut de trouver une rationalité minimale qui nous assure que les mots que nous utilisons ont un sens et donc une définition.

L’inventeur de la définition serait, selon Aristote, Socrate. Socrate cherche en effet ce qui fait qu’une chose est telle qu’elle est : par exemple, dans l’ Hippias majeur, pourquoi cette chose belle est-elle belle ? Il y aurait ainsi un caractère commun aux choses belles, une essence, dont la formulation est la définition.

Cependant, le point de départ de Socrate est existentiel : il s’agit de prendre conscience de ce que nous disons et de ce que nous faisons quand nous suivons des conceptions morales ou scientifiques. La définition permet de mettre à l’épreuve notre prétendu savoir, surtout quand Socrate montre à ses interlocuteurs qu’ils ne savent pas produire une définition cohérente de ce qu’ils pensent : ils ne pensent donc rien de défini, rien qui n’ait une extension précise et bien déterminée. Dans le meilleur des cas, ce sont des ignorants, dans le pire des imposteurs.

Les problèmes liés à la définition (en particulier le problème du paradoxe donné plus haut) ont été des motivations dans la recherche pour tous les philosophes. En effet, l’analyse des concepts et de ce que l’on veut dire, la recherche de l’extension des concepts que nous utilisons, est l’un des aspects majeurs de la philosophie, de Platon et Aristote à Locke, Hume et toute la philosophie anglo-saxonne notamment. Logique [ modifier | modifier le code ]

Certains symboles comme ceux de l’existence, l’appartenance, la négation etc. qui ne peuvent être définis, sont grossièrement introduits en faisant appel à des mots du langage naturel et à l’idée intuitive que l’homme peut en avoir. Ces termes primitifs appartiennent au « domaine intuitif de base ». (Concept des mots non définis utilisé par Alfred Korzybski)

En mathématiques, une définition est un énoncé écrit en langage naturel ou en langage formel (de la logique), qui introduit un nouveau mot ou symbole associé à un objet abstrait décrit par un assemblage d’autres mots ou symboles dont le sens a déjà été précisé.

Ces mots ou symboles sont des « abréviations », destinées à représenter de tels assemblages de lettres et de symboles. Ces abréviations permettent à un mathématicien d’utiliser l’objet mathématique ainsi construit sans avoir à l’esprit sa définition complète et détaillée. Dans la pratique, les abréviations sont des lettres alphabétiques, des signes ou des mots ordinaires, par exemple :

Il serait possible d’écrire toutes les mathématiques uniquement en langage formel, mais cela rendrait leur utilisation difficile et d’après Roger Godement, un nombre aussi simple que 1 nécessiterait un assemblage d’environ dix mille symboles [réf. nécessaire] [citation nécessaire].

Une définition n’est pas un théorème, elle donne simplement une dénomination à des objets mathématiques mais ne décrit pas de règles d’utilisation de ces objets ou de propriétés vérifiées par ces objets (autres que celles qui le définissent).

Certains utilisent maladroitement un « si et seulement si » à la place du « si », mais cela n’a pas de sens, puisqu’ils écrivent dans ce cas une équivalence entre un terme qui n’est pas une proposition qui, de plus, n’est pas encore défini et une proposition.

Si la définition d’un objet donné suppose qu’une proposition P soit vérifiée, alors l’affirmation « par définition » ou « en vertu de la définition » la proposition P est vérifiée signifie que nous utilisons la proposition P intrinsèque à l’objet. Considérons la définition suivante :

Dans un exposé mathématique, il arrive qu’une définition « intuitive » soit donnée avant la définition mathématique ; son rôle est de mettre en évidence les motivations d’une telle définition. Par exemple, des définitions de dictionnaire: explication d’un mot. Notes et références [ modifier | modifier le code ]