Dish hackaday gas 4 less redding ca

#######

There’s something iconic about dish antennas. Chances are it’s the antenna that non-antenna people think about when they picture an antenna. And for many applications, the directionality and gain of a dish can really help reach out and touch someone. So if you’re looking to tap into o gosh a distant WiFi network, this umbrella-turned-dish antenna might be just the thing to build.

Stretching the limits of WiFi connections seems to be a focus of [andrew mcneil]’s builds, at least to judge by his YouTube channel. This portable, foldable dish is intended to increase the performance of one of his cantennas, a simple home-brew gas 66 WiFi antenna that uses food cans as directional waveguides. The dish is built from the skeleton of an umbrella-style photographer’s flash reflector; he chose this over a discount-store rain umbrella because the reflector has an actual parabolic shape. The reflective material was stripped off and used as a template to cut new gores of metal window screen material. It’s considerably stiffer than the reflector fabric, but electricity office it stretches taut between the ribs and can still fold up, at least sort of. An arm was fashioned from dowels to position the cantenna feed-horn at the focus of the reflector; not much detail is given on the cantenna itself, but we assume it’s similar in design to cantennas we’ve featured gas station near me before.

Humanity has been a spacefaring species for barely sixty years now. In that brief time, we’ve fairly mastered the business of putting objects into orbit around the Earth, and done so with such gusto that a cloud of both useful and useless objects now surrounds us. Communicating with satellites in Earth orbit is almost trivial; your phone is probably listening to at least half a dozen geosynchronous GPS birds right now, and any ham radio operator can chat with the astronauts aboard the ISS with nothing more that a $30 handy-talkie and a homemade antenna.

But once our spacecraft get much beyond geosynchronous orbit astrid y gaston lima menu prices, communications get a little dicier. The inverse square law and the limited power budget available to most interplanetary craft exact a toll on how much RF energy can be sent back home. And yet the science of these missions demands a reliable connection with enough bandwidth to both control the spacecraft and to retrieve its precious cargo of data. That requires a powerful radio network 3 gases that cause acid rain with some mighty big ears, but as we’ll see, NASA isn’t the only one listening to what’s happening out in deep space. Continue reading “Serious DX: The Deep Space Network” → Posted in Featured, Interest, Original Art, Radio Hacks Tagged Cassini, Deep Space Network, dish, DSN, ESA, jpl, Juno, microwave, nasa, radio, reflector, satellite e gaskell, Saturn, voyager

Parabolic reflectors are pretty handy devices. Whether you’re building a microwave antenna or a long-distance directional microphone, suitable commercial dishes aren’t that hard to come by. But a big, shiny mirror for your solar death-ray needs is another matter, which is where this pressure-formed space blanket mirror might come in handy.

Pressure-forming was a great choice for [NighthawkInLight]’s mirror. We’ve covered pressure-formed plastic domes electricity estimated bills before, and this process is similar. A sheet of PVC with a recessed air fitting forms the platen. The metallized Mylar space blanket, stretched across a wooden frame to pull out the wrinkles and folds, is applied to a circle of epoxy on the platen. After curing, a few puffs with a bicycle tire pump forms the curve and stretches the film even smoother. [NighthawkInLight]’s first attempt at supporting the film gas nozzle prank with spray foam insulation was a bust, but the later attempt with fiberglass mesh worked great. A little edge support for the resulting electricity physics pdf shiny taco shell and the mirror was capable of the required degree of destructive potential.

[David Prutchi] has an FTA (free-to-air) satellite dish. This means he can tune and watch freely available satellite television feeds. But this sounds much better than it actually is. There isn’t much that’s broadcasted unecrypted from satellites electricity 1 7 pdf with the exception of a collection of religious channels. But he still uses the dish by using the FTA satellites to calibrate the alignment, then repositioning it to receive L-Band radio transmissions with his own add-on hardware. In the image above it’s the spiral of wire attached to the dish’s collector.

The satellite transmissions are picked up on the KU-band by an aftermarket horn that [David] purchased for this purpose. To add his own helix receiver he cut a square mounting plate that fits around the horn. This plate serves as a reflector and ground plane, and also hosts the helix connector which picks up the L-band transmissions. He had to be creative with routing the first few inches of the helix but it looks like gas stoichiometry worksheet answers he manages to get some pretty good performance out of the hardware.