Dsfp’s spaceflight history exploring mars from pole to pole mesur network (1991) electricity projects for grade 6

############

In July 1991, ARC proposed a multiprobe system outwardly not too different from PV2, but intended to create a long-lived network of low-cost science stations on Mars. According to ARC’s report on the concept, its network would reflect a design philosophy with "unique characteristics . . . derived from the Pioneer Project corporate memory."

Mars networks were first proposed in the early 1970s. electricity 1 unit how many watts Scientific advisory groups endorsed the network concept repeatedly in the following two decades as the best way to obtain global-scale weather and seismic data. In the late 1980s, at the behest of the NASA Headquarters Solar System Exploration Division (SSED), the Jet Propulsion Laboratory (JPL) Precursor Task Team included a network in its program of precursor robotic missions for paving the way for astronauts on Mars. In common with previous Mars network plans, the 1989 plan invoked spear-shaped penetrators to hard-land stations at low cost.

Each 158.5-kilogram MESUR lander would leave Earth attached toa Mars atmosphere entry deceleration system and a simple cruise stage. c gastritis Upon arrival at Mars, each would cast off its cruise stage and enter the atmosphere directly from its Earth-Mars trajectory at up to seven kilometers per second. The ARC report compared this with the Viking landers, which entered from Mars orbit at only 4.4 kilometers per second. gas in dogs The lander’s heat shield, a two-meter-diameter flattened cone, would be designed to withstand atmosphere entry during planet-wide dust storms, when suspended dust particles might exacerbate shield erosion.

The ARC report acknowledged that the disk-shaped lander might bounce to rest on Mars in either "heads" or "tails" orientation, but rejected as costly and risky a mechanical system for tipping it upright. electricity and circuits physics The ARC engineers opted instead for circular ports that would enable controllers to deploy instruments from either side of the station. Instruments might include imagers, an atmospheric structure experiment, gas analyzers, a weather station, a spectrometer, and a seismometer.

The report explained that solar cells were initially ARC’s preferred MESUR power system, but analysis had shown that the number of cells that could be mounted on the lander’s small surface would not generate enough electricity to drive its science instruments unless landings were limited to sites within 30° of the martian equator. This limitation was deemed unacceptable by the MESUR Science Definition Team, so engineers opted for a small (nine-kilogram) General Purpose Heat Source (GPHS) Radioisotope Thermal Generator (RTG) "brick" based on Ulysses solar polar orbiter/Galileo Jupiter orbiter RTG technology.

The MESUR mission would begin in 1999 with the launch of a single Delta II 7925 rocket from Cape Canaveral, Florida, with four MESUR landers mounted on a framework within its 9.5-foot-diameter streamlined launch shroud. electricity electricity song After a solid-propellant upper stage placed them on course for Mars, the landers would separate from the framework to travel on "independent free-flyer trajectories" that would permit precise Mars landing site targeting. year 6 electricity assessment Three side-mounted landers would tumble after separation, but sloshing propellants in their cruise stages would gradually damp their gyrations.

The MESUR lander design would permit landings at sites up to six kilometers above the base datum, the martian equivalent of Earth’s sea level. The base datum, referenced to the minimum Mars atmospheric pressure required for liquid water to exist on the surface, was established after Mariner 9 mapped the planet from orbit in 1971-1972. (In 2001, a new system referenced to the mean radius of Mars as measured by Mars Global Surveyor’s MOLA instrument replaced the base datum.)

Though all 16 MESUR landers would carry the same suite of instruments, their individual landing sites would be selected to cater to different science requirements. The report advised that weather stations should be spaced widely over the planet, while seismic stations should form closely spaced "triads." These conflicting requirements forced a "compromise network design."

With the successful arrival of the four 2001 stations, a "minimal network" would be in place on Mars. Station 5, on the Marineris north rim, would create a "seismic triad" with Stations 1 and 2, while Station 6, northwest of Olympus Mons, would create a seismic pair with Station 3. Station 7, east of Solis Planum ("a region of known dust storm activity"), and Station 8, in western Acidalia Planum, would expand martian meteorological coverage.

The final two MESUR Delta II 7925 launches in 2003 would boost four landers each on course for Mars. Stations 9 and 10 would be located near the north and south poles, respectively, while Station 11 would report weather conditions in Aonia Terra, southwest of the great Argyre basin. q gastrobar dias ferreira Stations 12 (northwest Hellas), 13 (Elysium Planitia), and 14 (Deuteronilus Mensae) would further extend martian meteorological coverage.

The entire 16-station network and its communications orbiter would function for at least a martian year (a little more than two Earth years). This would mean that the 1999 stations would have to endure for three martian years (6.5 Earth years), while the 2001 stations and communications orbiter would need to function for two martian years (4.3 Earth years).

MESUR Network would be preceded by MESUR Pathfinder, a single-spacecraft mission for technology testing. Pathfinder was built larger than the the planned MESUR landers so that it could deliver to Mars a six-wheeled "microrover." JPL also opted for solar power in place of NASA ARC’s RTG bricks and a petal system to permit it to flip itself upright and release the rover instead of small instrument deployment ports.