Explaining the science of altitude training cyclingtips electricity 2014

###########

The majority of elite level coaches started introducing various forms of altitude training around the time of the 1968 Mexico City Olympics (Mexico City lies at an altitude of 2,200m). And although coaches might not have been able to explain back then why altitude training worked, they knew it did work as it allowed their athletes to perform better.

The dispute among key altitude training experts isn’t whether or not altitude training works but rather what is the most effective application method. As with any form of training, what works for athlete A may not work for athlete B. Therefore an experienced electricity rates el paso coach must work with athletes on an individualised program, something that the world of altitude training research is yet to do.

The difficulty lies in the simple fact that every individual manages hypoxic stress (low oxygen levels) differently. There are only a few groups of coaches and research teams around the world that are starting to experiment with this unique system of hypoxic load management. For example, if athlete A is physically tolerant to lower levels of oxygen he/she requires a higher altitude in order to see the same results as athlete B who shows signs of oxygen deprivation at low levels of altitude.

The biggest issue gas block dimple jig with the Live-High/Train-High method is that athletes are unable to reproduce the necessary training intensity to improve performance. For example, if a cyclist needs to ride at 300W for their Anaerobic Threshold (AT) efforts at sea level, when at altitude (say, 2,500m-3000m) it may “feel” the same as sea-level yet they might only be pushing 200-250W.

The issue here is that the cyclist may in fact de-train due to never actually training at the physiological level of their AT. So when this cyclist returns to sea-level after altitude exposure and tries to ride the AT @ 300W it is going to feel extraordinarily hard as they have never actually pushed 300W since prior to going to altitude. Live-High/Train-Low (altitude sleeping)

Research into sleeping at simulated altitude has shown this method to have a positive effect on performance in athletes. Various institutions, such as the AIS in Canberra, have altitude dormitories for athletes to sleep and live. Although this method works well, the benefits are lost within 2-3 weeks of ending the training electricity manipulation (as with any training stimulus).

The other downsides to this method of exposure can include reduced sleep quality, suppressed immune function, expensive equipment with limited access requiring a large time commitment. During during my time with the Western Bulldogs Football Club we often looked at trying to incorporate this method into the pre-season. Although we knew it could work, the practicality of getting players to spend several weeks away from home, family and friends just didn’t allow for it. Live-Low/Train-High (altitude training)

This is by far the easiest form of altitude training that a coach/athlete can integrate into their own training program. It allows for minimal disruption to an athlete’s home life and also means the electricity physics athlete can complete the majority of their training sessions at sea level. As a result the athlete doesn’t need to reduce the quality of the sessions, yet he or she still allows for the physiological adaptations that occur through altitude exposure. Recently, the AIS published research suggesting that the addition of altitude exercise to a training program can improve performance more than altitude sleeping alone. Take your pick

Both the Live-High/Train-Low and Live-Low/Train-High methods have strong research to suggest they elicit good improvement in an athlete’s performance. For most people considering using altitude training (as with most sport science practices) you really need to consider the practicalities of which method is going to be most beneficial for you.

Simulated altitude training (IHT) on the other hand is relatively inexpensive, flexible and subtle, which means it can complement an existing training gas quality comparison program without affecting your entire lifestyle. So with IHT you don’t require the same level of commitment from a financial and time perspective, meaning it is probably the best option for most people out there.

– After an extended block of altitude training there is a general “flattening” of performance once altitude training is ceased, usually within a 3-10 day timeframe. As an athlete you have two options here: either plan to compete your event immediately (within three electricity and circuits class 6 days) of ceasing altitude training, or wait for 10-14 days after finishing altitude training before undertaking your race. This ensures your body has been able to recover fully from the physiological stress of being at altitude

– Reduce the workload of your training sessions when at altitude. One of my favourite sessions for cyclists is 8 x 5 minutess at AT (anaerobic threshold) with a 1 minute recovery. If you would normally complete these 5-minute efforts at 300W at sea-level then you must reduce this when at altitude. You can do this several ways: reduce the effort to 200-250W, reduce the 5-minute efforts to 3-4 minute efforts or (3) extend the recovery between efforts from 1 minute to 2-3minutes. All of the above methods would be a great way to begin your initial exposure to altitude training

It is also worth discussing some of the legal and ethical issues associated with simulated altitude training. The International Olympic Committee has banned the use of simulated altitude training devices within the electricity cost in california confines of Olympic village since Sydney 2000. Similarly, the Italian Health Ministry has banned the use hypobaric/hypoxic devices since 2005.

WADA has also previously considered adding the use of simulated hypoxic devices to its banned list because a number of convicted “dopers” in the cycling world used altitude training as a means of defence against their doping charges. Earlier this year the infamous Michele Ferrari said Lance Armstrong could have achieved the same levels of performance-enhancement through altitude training as he did from his doping practices.

While it’s unclear whether this is true or not ( these gas laws worksheet pdf articles dispute this statement; part 1, part 2) , it is true that altitude training can increase the body’s production of red blood cells. The difference between altitude training and taking EPO, though, is that the body has natural checks and balances that mean adaptations to altitude training are done slowly and safely. The injection of EPO, on the other hand, can throw the the body’s natural balances out, leading to range of adverse health outcomes.