Framework diversity of carbon nitrides offers rich platform for single atom catalysis – science newsline gas in dogs

The development and understanding of efficient catalysts based on isolated metal centers stabilized on suitable hosts is a challenging task that has sparked the imagination of researchers worldwide. The major interest in this topic arises for three key reasons: the prospect of improving the utilization of precious metals, the potential to achieve unprecedented functionality thereby enabling landmark shifts in catalytic processes, and the possibility to gain fundamental understanding of catalytic materials.

There has been an increasing demand for high-performant and cost-effective organic electron-transport materials for organic light-emitting diodes (OLEDs). The design of a desirable electron-transport material may present a demanding challenge since many factors and the complex trade-offs therein have to be taken into account, such as glass transition temperature, charge mobility, triplet energy, electron injection and hole blocking characteristics. Frequently, the pursuit of high-mobility ETMs (10-4-10-3 cm2 V-1 s-1) encounters difficulties in purification. Moreover the potential halogen-containing impurities may create a source of

The timing, tectonic setting, and deforming kinematics of the "Yanshanian Movement" are still matters of controversy. They are the key issues related to destruction of North China craton, and dynamic linkage of tectonism of Northeast Asian continental margin to West Pacific plate subduction. A recently-published paper, taking the region of Zhangjiakou in Yanshan Mountains as an example, identifies five types of growth strata developed in different growth structures, and suggests the "pair" of basement-involved fold-thrust belt and flexure basin might have been controlled

The timescale is the base to reconstruct the history of the Earth and the biological evolution. A research on a chronostratigraphic sequence of the Chinese Neogene with accurate geological datings was published online in Science China: Earth Sciences.

Superconductivity, known as a quantum state with zero resistance and perfect diamagnetism, has attracted great attention in physical science. Due to the quantum size effect, low dimensional superconducting systems can exhibit novel behaviors different from bulk situation. Particularly, the investigations on strong spin-orbit coupling or ferromagnetic nanowires with superconducting contacts have become a research highlight in connection with the exploration of topological superconductivity and topological quantum computation. Dr. Jian Wang and Prof. Moses Chan have made a series of progresses in inducing superconductivity

The study of quantum channels is the fundamental field and promises wide range of applications, because any physical process can be represented as a quantum channel transforming an initial state into a final state. Performing quantum computing using quantum cloud will become a standard way in the future. IBM Q is an industry-first initiative to build commercially available universal quantum computers for business and science in cloud. Recently, a study demonstrated a new algorithm of constructing quantum channel experimentally using the universal IBM

1T-TiSe2 has been widely studied in the past few decades as one of the typical charge density wave (CDW) materials. Recently, superconductivity was realized in this system through Cu intercalation, pressure or electric gating, forming a dome-shaped superconductivity phase diagram. Owing to this resemblance to high -Tc cuprates, much attention has been paid to 1T-TiSe2 to understand the superconducting mechanism and its interplay with CDW. However, it is still under debate whether CDW competes with superconductivity or not. Via tuning the dopant level,

Sodium is one of the most abundant elements, widely distributed on the earth and in the ocean. Thus, sodium-ion batteries attract much attention due to the application in large-scale energy storage. The most popular cathodes for SIBs, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein such host rearrangement is unfavorable due to the fact: (1) the O-type phase is undesirable relative to the P-type, as the latter possesses more open framework for Na-ion

Why the North China Craton became active 1~2 million years ago after 2 billion years of quiescence? The newest research suggested that its small size and the intra-plate weak zones make it vulnerable to destruction (internal reason). The subductions of the surrounding plates, also contribute to its destabilization (external factor). The subduction and retreating of the (Paleo-) Pacific plate, 1~2 million years ago, was of critical significance because it triggered the thinning and replacement of the lithospheric mantle coupled with basin-mountain respond in