Guide to the best knife steel knife informer static electricity zap


In choosing the best pocket knife you should pay particular attention to the type of steel used in the blade. Alongside edge geometry and design, blade steel is a critical element that determines how a knife performs. Steel is essentially an alloy (i.e. a mix) of carbon and iron that is often enriched with other elements to improve certain characteristics depending on the desired application.

Toughness is the ability to resist damage like cracks or chips when subject to impact or “sudden loads”. Chipping is a knife’s worst enemy and never easy to fix. There are a number of different ways to measure toughness (i.e. chapter 7 electricity test Charpy, Izod) thus it’s less standardized than hardness when it comes to knives. In general, the harder the steel the less tough it’s likely to be. Wear Resistance

Wear resistance is the steel’s ability to withstand damage from both abrasive and adhesive wear. Abrasive wear occurs when harder particles pass over a softer surface. Adhesive wear occurs when debris is dislodged from one surface and attaches to the other. Wear resistance generally correlates with the steel’s hardness but is also heavily influenced by the specific chemistry of the steel. In steels of equal hardness, the steel with larger carbides (think microscopic, hard, wear resistant particles) will typically resist wear better. However, carbides can become brittle and crack, thus decreasing toughness. Corrosion Resistance

Edge Retention represents how long the blade will retain its sharpness when subject to periods of use. It’s what everyone talks about these days but unfortunately the measurement of edge retention lacks any defined set of standards and so much of the data is subjective. For me, edge retention is a combination of wear resistance and an edge that resists deformation.

Unfortunately the “best knife steel” is not simply a case of maximizing each of the properties above…. it’s a trade off. chapter 7 electricity and magnetism The biggest trade off is balancing strength or hardness with toughness. Some blades can be made to be exceptionally hard but will chip or crack if you drop them onto a hard surface. Conversely a blade can be extremely tough and able to bend but will struggle to hold it’s edge. Basically, the stuff that makes steel strong (high amount carbon/carbides) generally lowers the toughness. Also note that the term ‘ stainless steel‘ is generally misleading as most all types of steel will show some kind of discoloration if left exposed to the elements for long enough. By knowing how you plan to use the knife you will generally be able to determine the best steel for your situation.

• Stainless Steel – basically carbon steel with added chromium to resist corrosion and other elements which increase performance levels but usually at the expense of inferior toughness. Easily the most popular category today for EDC knives and includes the 400, 154CM, AUS, VG, CTS, MoV, Sandvik and Crucible SxxV series of steels. Note that to qualify as a true stainless steel there must be at least 13% chromium.

Below are the most common steels found in knife blades today. Yes, technically there are “better” steels out there (CPM-125V, CPM-10V, K294 to name a few) but these are extremely rare in the marketplace. Don’t get too carried away with the perceived rankings, it’s not an exact science and this is simply my way of bucketing the steels into general performance categories based on a variety of factors.

In today’s fiercely competitive market the ultimate steels rarely retain their crown for long. Manufacturers consistently push the boundaries of science and technology to introduce superior alloys to the marketplace and boost profits. I remember the days when 440C was king, an impressive steel now relegated to the budget category. Sure, marketing plays a huge role today with companies using slick tactics to convince consumers that their latest steel is even better than the last. z gas el salvador numero de telefono Truth is, it’s becoming increasingly difficult to evaluate these steels objectively as the incremental performance gains become indistinguishable and almost impossible to quantify outside of the laboratory. Still, here’s my take on some other steels which are popular among knife enthusiasts but still relatively rare in the marketplace. Maxamet

Maxamet is the latest powder steel from Carpenter (aka CarTech). Its an extreme alloy with insane hardness and tremendous edge retention while still retaining a reasonable amount of toughness but at the expense of corrosion resistance (it’s not stainless). While it wasn’t designed to compete with Crucible’s chart topping CPM-S110V steel, many knife nerds like the compare the two. So, how does Maxamet compare against CPM-S110V? Well, it’s largely still up for debate but from my experience Maxamet matches S110V in edge retention but falls short on corrosion resistance. Both are ridiculously difficult to sharpen. Stay tuned as I spend more time with this steel and expand on my evaluation. You’ll find Maxamet on some Spyderco offerings like the Native 5 and Manix 2. Cru-Wear

Cru-Wear is a Crucible tool steel which can be thought of as a modification of D2 steel by dialing down the carbon and chromium while jacking up the vanadium and tungsten levels. Vanadium carbides beat out chromium for hardness and and lower carbon levels make for a tougher steel. So, now it becomes comparable to CPM-3V and M4, with excellent toughness and thus resistance to chipping in knives. Bottom line is, CruWear is offered as a balance between 3V and M4. It’s tougher than M4 but won’t hold an edge as long, while being less tough than 3V but holds and edge longer. Basically a good balance of toughness and wear resistance. Currently being offered by Bark River Knives, Jake Hoback, Spyderco. Are all blades from the same steel alike?

Absolutely not. A massive factor in how a blade performs comes from Heat Treating. grade 6 science electricity multiple choice test In transforming the ‘raw’ steel into the finished blade each manufacturer will heat treat the steel to bring out the best in its inherent characteristics. Heat treating is complicated and it requires skill to bring out the very best that the steel can offer. So, a CPM-S30V knife from one manufacturer may perform very differently to that from another. Knife Steel Performance Charts

CPM stands for Crucible Particle Metallurgy which is a process for manufacturing high quality tool steels. American Crucible Industries is the sole producer of CPM steels which are formed by pouring the molten metal through a small nozzle where high pressure gas bursts the liquid stream into a spray of tiny droplets. These droplets are cooled, solidified into a powder form and then hot isostatically pressed (HIP) where the powder is bonded and compacted. The trick here is that the HIP process ensures each of the fine particles have a uniform composition without any alloy segregation. gas 76 All this results in a steel that has improved toughness, wear resistance and can be ground and heat treated with maximum effect. Austenitic vs Martensitic Steel

Austenitic steel contains high amounts of nickel (around 8%) which makes it non-magnetic and relatively soft making it generally undesirable for knife making. However, the benefits of Austenitic steel are its toughness and superior corrosion resistance from high levels of chromium making it perfect for everyday items like forks, spoons, kitchen sinks, etc. Martensitic steel contains less chromium while still meeting the criteria for stainless steel but very little nickel thus making the steel magnetic. What really sets martensitic steels apart is higher levels of carbon which allows for the formation of Martensite, an extremely hard structure making it ideal for knifemaking. Steel manufacturers can transform austenite into martensite through rapid quenching. What about Damascus steel?

Damascus steel originates from the middle east from countries like India and Pakistan where it was first used back in good old “BC” times. It’s instantly recognizable as it bears a swirling pattern caused by the welding of two different steels and so often referred to as “pattern-welded” steel (not to be confused with Wootz steel which is only similar in appearance). There are many myths about the strength and capabilities of Damascus steel but today it is largely popular because of its aesthetic beauty. Mostly for collectors only. Other considerations

Remember, blade steel is not everything. Knife buyers should beware getting caught up in researching the perfect steel type as it is not by itself the only thing that dictates how a knife will perform. Steel analysis has become somewhat scientific that it’s easy to get caught up in the maze of statistics. Note – just because a blade is made from the premium or high-end steels listed above does not automatically mean it’s “better” than the lesser steels. The heat treatment techniques used by the manufacturer as well as the design of the blade itself play a huge role in the ultimate outcome of knife performance!