Histamine — wikipédia 2015 electricity prices

###

Selon les récepteurs qu’elle active, l’histamine provoque une réponse immunitaire, une sécrétion de suc gastrique et d’ acide chlorhydrique, un relâchement des petites artères, une contraction des bronches et des muscles de l’ intestin, une accélération de la fréquence cardiaque (tachycardie), un relâchement des contractions de l’ utérus. Elle est en outre responsable du prurit (démangeaison de la peau). Dans le système nerveux central, elle assure le maintien de l’état de veille.

L’un des premiers effets repérés de l’histamine a été un rôle de médiateur dans la réponse allergique immédiate, mais l’ensemble des fonctions qu’elle a dans les cellules qui la contiennent et dans leur environnement est encore mal cerné. On sait qu’à très faible dose (non détectables par les techniques conventionnelles [3 ]), elle contribue à réguler divers processus physiologiques dont « la sécrétion d’acide gastrique, la neurotransmission, la régulation de la microcirculation et la modulation des réactions inflammatoires et immunologiques » [3 ]. Ces fonctions lui confèrent tantôt des propriétés pharmacologiques tantôt une certaine toxicité pour l’organisme [3 ].

L’histamine est synthétisée à partir de la L-histidine, un acide aminé essentiel, par l’enzyme histidine décarboxylase. Un inhibiteur de cette histidine décarboxylase, nommée la tritoqualine (Hypostamine®), est proposée en traitement d’appoint des affections allergiques [5 ].

Une fois formée, l’histamine est soit stockée soit dégradée. La dégradation est assurée par l’ histamine N-méthyl transférase, localisée dans le cytoplasme de nombreuses cellules, neurones et cellules gliales au niveau central. Le produit formé est ensuite dégradé par la MAO-B ( monoamine oxydase B).

Dans les neurones, le renouvellement de l’histamine stockée dans les vésicules présynaptiques est rapide. Sa demi-vie est d’environ 30 minutes. Par contre, dans les mastocytes, l’histamine stockée dans les granules de sécrétion, est complexée avec des résidus d’acides divers ( héparine, sulfate de chondroïtine) et sa demi-vie dans ce cas est beaucoup plus longue, de l’ordre de plusieurs semaines. Libération de l’histamine [ modifier | modifier le code ]

L’histamine libérée par les mastocytes va se fixer dans le voisinage, sur les récepteurs H1 des cellules endothéliales des vaisseaux sanguins et les récepteurs H1 des cellules musculaires lisses [5 ]. Il en résulte une vasodilatation et la formation d’un œdème local accompagnant les allergies cutanées et nasales. La vasodilatation capillaire, provoquée probablement par la libération de monoxyde d’azote NO est à l’origine de la rougeur du visage et de certaines céphalées.

L’histamine joue un rôle important dans les mécanismes de l’intolérance alimentaire, de l’ allergie (elle est responsable de manifestations allergiques telles que les vasodilatations, le prurit et les œdèmes), de l’ anaphylaxie, de l’ urticaire, des inflammations et augmente pendant la réaction allergique.

Les antihistaminiques sont des médicaments qui inhibent les récepteurs histaminiques H1 (manifestations allergiques) et H2 (estomac). En bloquant les récepteurs de l’histamine, les antihistaminiques empêchent l’histamine d’agir. Il existe au moins un antihistaminique atypique utilisé en thérapeutique qui agit en inhibant la L-histidine décarboxylase ( tritoqualine). Histamine et sécrétion acide de l’estomac [ modifier | modifier le code ]

L’histamine est aussi un neurotransmetteur synthétisé et libéré par les neurones appelés « neurones histaminergiques ». Elle est stockée dans des vésicules (mais le transporteur responsable de cette localisation n’a pas encore été identifié). Elle est libérée à la suite d’un stimulus électrique et va se lier à des récepteurs post- ou présynaptiques.

On trouve le corps cellulaire de tels neurones dans une zone bien précise du système nerveux central : l’ hypothalamus et plus précisément dans le noyau tubéromamillaire de l’hypothalamus postérieur. Ce noyau, situé à la périphérie des corps mamillaires, est formé de cellules de grandes tailles qui se projettent de façon diffuse sur le cortex cérébral et en particulier sur les régions ventrales ( hypothalamus, le prosencéphale basal, amygdale) qui sont fortement innervées [6 ].

Les axones de ces neurones histaminergiques, largement répartis dans tout le cerveau, y libèrent de l’histamine, qui va se fixer sur les récepteurs H1 et H2 de neurones, tous postsynaptiques et des récepteurs H3 présynaptiques [5 ]. Ces derniers sont des autorécepteurs présynaptiques inhibiteurs. Les récepteurs H3 peuvent être aussi postsynaptiques et jouer le rôle de régulateurs de la libération des autres neurotransmetteurs. Ils sont largement distribués dans le striatum, le noyau accumbens et le cortex cérébral.

Le taux de décharge des neurones histaminergiques varie au cours du cycle veille-sommeil. Il est le plus grand durant l’éveil et le plus faible durant le sommeil paradoxal. On observe les mêmes variations cycliques dans la décharge de la noradrénaline des neurones du locus coeruleus ou la sérotonine dans les noyaux du raphé : activité maximale durant l’éveil, diminuée pendant le sommeil lent et disparition presque complète dans le sommeil paradoxal.

Des enregistrements de cellule histaminergique individuelle chez le chat ont montré une absence d’activité durant le sommeil mais une reprise d’activité un peu avant le début de l’éveil [7 ]. La libération importante d’histamine durant l’éveil et durant la phase précédant l’éveil suggèrent que ces neurones jouent le rôle de promoteur de l’éveil. De même, il a été observé qu’une micro-injection de muscimol, un agoniste puissant du GABA, dans le noyau tubéromamillaire, supprimait l’éveil et faisait entrer dans une phase de sommeil lent.

Le rôle de l’histamine dans l’éveil explique aussi pourquoi les antihistaminiques utilisés contre l’allergie ont pour effet secondaire la somnolence : ils bloquent l’action de l’histamine. Mais les nouvelles générations d’antihistaminiques ne passent pratiquement pas la barrière hémato-encéphalique et ne devraient plus provoquer de sédation.

Le système histaminergique cérébral module le rythme de veille/sommeil, mais aussi la prise alimentaire et/ou la prise de poids, ainsi que l’attention et la vigilance, sous le contrôle de l’hormone mélatonine. Alimentation et histamine [ modifier | modifier le code ]

Les principaux symptômes observés sont liés à l’effet vasodilatateur de l’histamine. Les symptômes les plus souvent rencontrés sont : rougeur facio-cervicale, éruption cutanée, œdème du visage, bouffées de chaleur, sensation de brûlure dans la gorge, démangeaisons, picotements de la peau. Ces symptômes cutanés sont assez spécifiques de l’intoxication histaminique, ils sont généralement accompagnés de signes généraux à type de céphalées, palpitations cardiaques, étourdissements. Enfin, des symptômes secondaires de nature gastro-intestinale peuvent apparaître : nausées, maux d’estomac, vomissements, diarrhée.

Certaines formes d’ intoxications alimentaires sont dues à la conversion de l’histidine en histamine dans des denrées alimentaires décomposées, comme du poisson, par l’action de décarboxylases microbiennes. Ainsi, le scombrotoxisme est une intoxication alimentaire due à la formation d’histamine après dégradation bactérienne de l’histidine, présente en grande quantité dans certains poissons comme les thons, maquereaux et bonites. Réglementation [12 ] [ modifier | modifier le code ]