How circular is the circular economy wrong kind of green electricity 2pm live

##########

The circular economy has become, for many governments, institutions, companies, and environmental organisations, one of the main components of a plan to lower carbon emissions. gas in back and chest In the circular economy, resources would be continually re-used, meaning that there would be no more mining activity or waste production. The stress is on recycling, made possible by designing products so that they can easily be taken apart.

Attention is also paid to developing an “alternative consumer culture”. In the circular economy, we would no longer own products, but would loan them. For example, a customer could pay not for lighting devices but for light, while the company remains the owner of the lighting devices and pays the electricity bill. A product thus becomes a service, which is believed to encourage businesses to improve the lifespan and recyclability of their products.

The circular economy is presented as an alternative to the “linear economy” – a term that was coined by the proponents of circularity, and which refers to the fact that industrial societies turn valuable resources into waste. However, while there’s no doubt that the current industrial model is unsustainable, the question is how different to so-called circular economy would be.

The first dent in the credibility of the circular economy is the fact that the recycling process of modern products is far from 100% efficient. A circular economy is nothing new. In the middle ages, old clothes were turned into paper, food waste was fed to chickens or pigs, and new buildings were made from the remains of old buildings. electricity cost calculator The difference between then and now is the resources used.

For example, a recent study of the modular Fairphone 2 – a smartphone designed to be recyclable and have a longer lifespan – shows that the use of synthetic materials, microchips, and batteries makes closing the circle impossible. Only 30% of the materials used in the Fairphone 2 can be recuperated. A study of LED lights had a similar result.

The more complex a product, the more steps and processes it takes to recycle. electricity notes In each step of this process, resources and energy are lost. Furthermore, in the case of electronic products, the production process itself is much more resource-intensive than the extraction of the raw materials, meaning that recycling the end product can only recuperate a fraction of the input. And while some plastics are indeed being recycled, this process only produces inferior materials (“downcycling”) that enter the waste stream soon afterwards.

The low efficiency of the recycling process is, on its own, enough to take the ground from under the concept of the circular economy: the loss of resources during the recycling process always needs to be compensated with more over-extraction of the planet’s resources. Recycling processes will improve, but recycling is always a trade-off between maximum material recovery and minimum energy use. And that brings us to the next point. How to Recycle Energy Sources?

As energy is transferred or transformed, its quality diminishes (second law of thermodynamics). For example, it’s impossible to operate one car or one power plant with the excess heat from another. Consequently, there will always be a need to mine new fossil fuels. Besides, recycling materials also requires energy, both through the recycling process and the transportation of recycled and to-be-recycled materials.

To this, the supporters of the circular economy have a response: we will shift to 100% renewable energy. electricity 2pm But this doesn’t make the circle round: to build and maintain renewable energy plants and accompanied infrastructures, we also need resources (both energy and materials). What’s more, technology to harvest and store renewable energy relies on difficult-to-recycle materials. That’s why solar panels, wind turbines and lithium-ion batteries are not recycled, but landfilled or incinerated. Input Exceeds Output

The third dent in the credibility of the circular economy is the biggest: the global resource use – both energetic and material – keeps increasing year by year. electricity sound effect The use of resources grew by 1400% in the last century: from 7 gigatonnes (Gt) in 1900 to 62 Gt in 2005 and 78 Gt in 2010. That’s an average growth of about 3% per year – more than double the rate of population growth.

A considerable segment of all resources – about a third of the total – are neither recycled, nor incinerated or dumped: they are accumulated in buildings, infrastructure, and consumer goods. gas chamber In 2005, 62 Gt of resources were used globally. After subtracting energy sources (fossil fuels and biomass) and waste from the mining sector, the remaining 30 Gt were used to make material goods. Of these, 4 Gt was used to make products that last for less than one year (disposable products).

The other 26 Gt was accumulated in buildings, infrastructure, and consumer goods that last for more than a year. In the same year, 9 Gt of all surplus resources were disposed of, meaning that the “stocks” of material capital grew by 17 Gt in 2005. In comparison: the total waste that could be recycled in 2005 was only 13 Gt (4 Gt disposable products and 9 Gt surplus resources), of which only a third (4 Gt) can be effectively recycled.

As long as we keep accumulating raw materials, the closing of the material life cycle remains an illusion, even for materials that are, in principle, recyclable. For example, recycled metals can only supply 36% of the yearly demand for new metal, even if metal has relatively high recycling capacity, at about 70%. We still use more raw materials in the system than can be made available through recycling – and so there are simply not enough recyclable raw materials to put a stop to the continuously expanding extractive economy. The True Face of the Circular Economy

A circular economy would therefore demand that we use less fossil fuels (which isn’t the same as using more renewable energy), and that we accumulate less raw materials in commodities. Most importantly, we need to make less stuff: fewer cars, fewer microchips, fewer buildings. year 6 electricity worksheets This would result in a double profit: we would need less resources, while the supply of discarded materials available for re-use and recycling would keep growing for many years to come.

It seems unlikely that the proponents of the circular economy would accept these additional conditions. The concept of the circular economy is intended to align sustainability with economic growth – in other words, more cars, more microchips, more buildings. For example, the European Union states that the circular economy will “foster sustainable economic growth”.