Insect – simple english wikipedia, the free encyclopedia gas delivery


Insects have exoskeletons ( skeletons on the outside). Their skeletons are made out of thin, hard pieces or plates, like armour, made of chitin. All together, these pieces make a hard layer around the insect’s body. The exoskeleton protects the insect.

The abdomen is the back part of the insect. Inside the abdomen is the stomach, the heart, and the excretory system where body wastes pass out of the insect. Bees also have a stinger at the back of the abdomen. Physiology [ change | change source ]

Insects are cold-blooded, which means that they cannot control their body temperature. [10] This means that insects are not good at surviving the cold, at any rate out in the open. In the winter, many insects go into something called diapause, which is the insect version of hibernation. Some insects, like cockroaches, cannot go into diapause and they will die if it gets too cold outside. This is why cockroaches love living in people’s warm houses. Respiratory and circulatory systems [ change | change source ]

Insect respiration happens without lungs. There is a system of internal tubes and sacs through which gases diffuse or are actively pumped. Air is taken in through openings on the sides of the abdomen called spiracles. Oxygen gets to tissues that need it through their trachea (element 8 in diagram).

Adult insects use oxygen at a high rate when they fly. They need it for the flight muscles, the most active tissue known in biology. [12] The flight muscles use oxygen at a huge rate: 100 ccs of oxygen for every single cc of tissue per hour. [13] With this system, the greatest diameter a muscle could have (and still consume oxygen at this rate) is about 0.5cm. [12] Even with special extra arrangements, insects cannot get larger than about 11cm long. The largest insect bodies are about as big as a mouse. [13]

Some insects also use a molecule called haemocyanin, which does the same job as haemoglobin does in vertebrates (but less efficiently). The insect circulatory system has no veins or arteries. The ‘blood’ is called haemolymph, and moves around in the space called the haemocoel. The organs sit in the haemocoel and are bathed in the haemolymph. The ‘heart’ is little more than a single tube which pulses (squeezes). [14] :61–65 [15] How insects grow [ change | change source ]

Although the adults are larger, they do need a magnifying glass or a binocular microscope to see the details. A professional entomologist uses a binocular microscope to identify insects, plus a printed reference work. [16] There are far too many insects for anyone to remember them all, and most entomologists specialise in just one or two orders.

After the eggs hatch, two kinds of development may occur. Some insects have what is called ‘incomplete metamorphosis’. This means that a small insect, called a nymph comes out of the egg, and the nymph looks almost the same as the adult insect. As the nymph grows, it does not change the way it looks, but only how big it is. It goes through a number of stages, called ‘instars’. Grasshoppers grow in this way.

Other insects have complete metamorphosis, which means that the small larva which comes out of the egg looks very different from the adult insect. Insects that have complete metamorphosis usually come out of the egg as a larva, which usually looks like a worm. The larva eats food and gets bigger until it turns into a pupa. Butterfly pupae ( plural for pupa) are often inside cocoons. Inside the cocoon the insect changes the way it looks and often grows wings. When the cocoon opens, the adult insect comes out. Many insects have complete metamorphosis, for example beetles, butterflies and moths, and flies. The adult stage of development is called the imago. Evolutionary history [ change | change source ] Origin of insects [ change | change source ]

The oldest known insect fossil is the Devonian Rhyniognatha, from the 396 million year old Rhynie chert. It may have superficially resembled a modern-day silverfish insect. This species already possessed mandibles of a type associated with winged insects, suggesting that wings may already have evolved at this time. Thus, the first insects probably appeared earlier, in the Silurian period. [1] [17] Origin of wings [ change | change source ]

The origins of insect flight remain obscure, since the earliest winged insects currently known appear to have been capable fliers. Some extinct insects had an additional pair of winglets attaching to the first segment of the thorax, for a total of three pairs. It seems the insects were not a particularly successful group of animals before they evolved wings. [3]

Upper Carboniferous and Lower Permian insect orders include both living groups and a number of Palaeozoic groups, now extinct. During this era, some giant dragonfly-like forms reached wingspans of 55 to 70 cm (22 to 28 in) making them far larger than any living insect.

This gigantism may have been due to higher atmospheric oxygen levels, which allowed increased respiratory efficiency. The lack of flying vertebrates could have been another factor. Many of the early groups became extinct during the Permian-Triassic extinction event, the largest mass extinction in the history of the Earth, around 252 million years ago. [19] Kinds of insects [ change | change source ]

Spiders, scorpions, and similar animals are not insects; they are arachnids. Arachnids are arthropods that have four pairs of legs. Centipedes are also arthropods, but not insects: they are in a subphylum called the Myriapoda. Taxonomy [ change | change source ]

Other pest insects do not directly hurt people. Termites and some beetles eat wood and sometimes eat buildings, such as houses. However, termites also help break down the trees and branches that fall on the forest floor. Many insects eat agricultural products (plants meant for people to eat). Grasshoppers are one example of pest insects that eat plants in agriculture.

Many bees and flies pollinate plants. This means the insects help the plants make seeds by moving pollen from one flower to another. Some good insects eat pest insects, such as lady beetles (or ladybirds or ladybugs) eating aphids. Many insects eat dead plants and animals. Pesticides [ change | change source ]

People often use poisons called insecticides to kill pest insects. Insecticides do not always work. Sometimes the pest insects become resistant to the insecticides, which means the insecticides do not hurt them anymore. Both the Colorado potato beetle and the diamondback moth are insects that are resistant to many insecticides.

Insecticides do not only kill pest insects; sometimes many helpful insects are killed too. When helpful insects are killed, such as those that eat pest insects, the pest insects may come back in larger numbers than before because they are not being eaten by helpful insects anymore. References [ change | change source ]