Laboratory events brookhaven national laboratory electricity transmission vs distribution


Quantum computing, spintronics and plasmonics are nascent fields with potential to radically change our technological landscape. Fundamental to advancing these technologies is a mastery of quantum materials such as superconductors, quantum-spin-liquids and multiferroics. Ideally, we would know exactly what interactions give rise to these phenomena and design materials suitable for applications however, such an understanding as of yet eludes us. gas bijoux nolita Instead we are stuck digging around in the phase space of known quantum materials slowly uncovering pertinent details to their design, filling in pieces of our incomplete picture. In this presentation, I will discuss recent bits I have found in my use of neutron scattering to study quantum materials. Starting with a novel new family of quasi-one-dimensional (Q1D) superconductors (A1,2TM3As3 with A = alkali metal and TM = Cr, Mo) I will present findings of short-range structural order and a proximate magnetic instability which, due the radically different structure, allow for new insights to the pertinence to such orders to superconductivity. Importantly, in these materials the two orders break different symmetries and so their interactions with the superconducting order can be studied independently. o goshi judo Next, I will discuss an interesting yet neglected family of frustrated magnetic materials – the rare-earth pyrogermanates (REPG). gas out game directions We find the Er2Ge2O7 REPG to exhibit ‘local-Ising’ type magnetism in direct analogy to the spin-ice pyrochlores suggesting effects of local anisotropies and dipole interactions. Finally, I will present ongoing work investigating spin-driven polarization effects in the magnetically and structurally straightforward multiferroic BiCoO3. These results demonstrate the essential role of neutron and x-ray scattering techniques in studying these complex materials and the fruitful opportunities these systems present to advance our understanding of quantum materials.

The understanding of the Electro-Weak Symmetry Breaking mechanism and the origin of the mass of fundamental particles is one of the most important questions in particle physics today. The top quark is unique among the known quarks since it is the heaviest fundamental particle in the Standard Model. what is electricity Its large mass makes the top quark very different from all other particles, with a Yukawa coupling to the Higgs boson close to unity. For these reasons, the top quark and the Higgs boson play very special roles in the SM and in many extensions thereof. An accurate knowledge of their properties can bring key information on fundamental interactions at the electroweak breaking scale and beyond. electricity year 6 The Large Hadron Collider is providing an enormous dataset of proton-proton collisions at the highest energies ever achieved in a laboratory. With the unprecedentedly large sample of top quarks, a new frontier has opened, the flavour physics of the top quark, allowing to study whether the Higgs field is the unique source of the top quark’s mass and whether there are unexpected interactions between the top quark and the Higgs boson. static electricity sound effect The answers to these questions will shed light on what may lie beyond the Standard Model and can even have cosmological implications.

To accept this challenge, new and more effective methods, capable of dealing with interacting systems/models in an approximation-free manner, are required. One of such methods is the field-theoretical Diagrammatic Monte Carlo technique (DiagMC). While a conventional Quantum Monte Carlo samples the configuration space of a given model Hamiltonian, the DiagMC samples the configuration space of the model-specific Feynman diagrams and obtains final results with controlled accuracy by accounting for all the relevant diagrammatic orders. In contrast to conventional QMC, it does not suffer from the fermionic sign problem and can be applied to any system with arbitrary dispersion relation and shape of the interaction potential (both doped and undoped). In the first part of my talk I will introduce the technique, based on its bold-line (skeleton) implementation, and benchmark it against known results for the problem of semimetal-insulator transition in suspended graphene. gas youtube In the second part I will briefly demonstrate its applications to various strongly-correlated systems/problems (stability of the 2d Dirac liquid state against strong long-range Coulomb interaction; interacting Chern insulators; phonons in metals; 1d chain of hydrogen atoms; uniform electron gas (jellium model), optical conductivity, etc).

Inspired by early convection-tank experiments (e.g., Deardorff and Willis) and diffusion-chamber experiments, we have developed a cloud chamber that operates on the principle of isobaric mixing within turbulent Rayleigh-Bénard convection. The "Pi cloud chamber" has a height of 1 m and diameter of 2 m. An attractive aspect of this approach is the ability to make direct comparison to large eddy simulation with detailed cloud microphysics, with well characterized boundary conditions, and statistical stationarity of both turbulence and cloud properties. Highlights of what we have learned are: cloud microphysical and optical properties are representative of those observed in stratocumulus; aerosol number concentration plays a critical role in cloud droplet size dispersion, i.e., dispersion indirect effect; aerosol-cloud interactions can lead to a condition conducive to accelerated cloud collapse; realistic and persistent mixed-phase cloud conditions can be sustained; LES is able to capture the essential features of the turbulent convection and warm-phase cloud microphysical conditions.

It is worth considering what more could be learned with a larger-scale cloudy-convection chamber. Turbulence Reynolds numbers and Lagrangian-correlation times would be scaled up, therefore allowing more enhanced role of fluctuations in the condensation-growth process. Larger vertical extent (of order 10 m) would approach typical collision mean free paths, thereby allowing for direct observation of the transition from condensation- to coalescence-growth. In combination with cloudy LES, this would be an opportunity for microphysical model validation, and for synergistic learning from model-measurement comparison under controlled experimental conditions.