Naa cutler maine – navy vlf transmitter site gas engineer salary

##########

house. The box-like units are capacitors. The very left is the top of a chain link fence and note electricity symbols ks2 the room walls are covered in copper plate. When we took tour groups through we’d have people hold fluorescent bulbs that were on the fence (strictly for the show) and turn off the lights. Then they would be told to raise the bulbs overhead and they would light up the whole place from stray RF over the fence top.

The tap for tuning the frequency of the system. That is a giant tuning coil inside of a four story building called a helix house. There is a massive insulator on top of the helix house that looks like a spark plug. It was sealed and filled with an inert gas gas in oil tank. Generally these failed in the winter and were hell to change. The helix was the center of each array.

Photo from Bob Mhoon – Counterweight. If deicing didn’t work, the arrays had the counterweight towers and the weight of the ice would cause the array to lower to the ground while pulling up the rollers. Those latched and you had to deice manually with baseball bats. Normally you would switch out the RF connection and connect to the AC power plant to warm the array and melt the ice.

The Cutler VLF transmitter. located in Washington County, ME, became operational on 4 January 1961. The Cutler antenna consists of two arrays. each having six diamond-shaped gas bubble retinal detachment topload panels made up of cables hoisted by halyards that are attached to 13 towers. Each panel has eight active cables. called conductors. that carry the radio frequency (RF) current. One support catenary cable crosses the eight conductors in the center of the diamond. The RF conductors in these topload panels are specially designed with gas zyklon b low enough resistance to have acceptable losses for VLF radiation. but enough resistance to enable deicing with 60-Hz current during winter months. Most of the cables consist of a 1-inch-diameter strand of a special alloy called Calsun bronze. However in order to provide corona-free operation at the high-radiated power levels, some sections of the conductors are 1.5 inches in diameter. The 1.5-inch diameter conductors were specially made with hollow center conductors covered by Everdure alloy exterior wires in order to meet the size. Strength. resistance. and weight requirements for use in the antenna. These cables. known as hollow core cables. make up part of the outer two cables on each panel grade 9 electricity worksheets. The hollow core sections on the cables inside of the catenary are 225 ft long, while those on the outside of the catenary are 775 ft long.

Each array consists of six diamond-shaped panels made up of cables supported from the towers by insulated halyards leading to permanent winches located at the bottom of each tower. A top view of one panel is given in figure 2. Each panel has eight active cables called conductors that carry the RF current. One support catenary cable crosses the eight conductors in the center of the diamond. The RF cables in these topload panels are specially designed to have low enough resistance to have acceptable loss for VLF radiation, but enough resistance to enable deicing by running 60-Hz current through them when needed during the winter.

Most gas you up of the conductor cables consist of 1-inch-diameter wire made from a special alloy called Calsun bronze. However, in order to provide corona-free operation at the high-power levels, some sections of the cables are 1.5 inches in diameter. These cables, specially made with hollow center conductors covered by exterior wires, were made of Everdure alloy in order to meet the size, strength, resistance, and weight requirements. The cables, known as hollow core cables, make up part of the outer two cables on each panel. The hollow core 66 gas station near me sections on the cables inside of the catenary are 225 ft long, while those on the outside of the catenary are 775 ft long.

The weather conditions along the coast of Maine are such that severe icing occurs during the winter months. The original requirement for the VLF Cutler transmitter called for continuous operation in all weather conditions. In order to survive severe icing, the antenna halyards are led through a counterweight system so that as the ice buildup increases the panel weight the counterweights let the halyards out, lowering the electricity in india travel panel. The counterweight system is designed to allow the panels to lower all the way to the ground, if necessary. During installation, this actually happened. As the ice melts the counterweights hoist the panels back to their original position: thus, the arrays will survive no matter how large the amount of ice buildup.

However, as the ice builds up and the panel lowers, the antenna capacitance increases and the antenna must be retuned. The tuning range is limited and the limit eventually reached whereby the antenna can no longer be tuned and transmission ceases. The solution to this problem is to de-ice the antenna system by heating the wires with 60-Hz current. Constructing a deicing system that would allow simultaneous transmission and deicing would have been prohibitively expensive. Instead, two arrays have been built that allow transmission on one array while the other is deicing electricity basics. This approach allows ice to build up on the transmitting array while the other array is deicing. When the one array grade 9 electricity unit test is sufficiently deiced, the roles are reversed. This continues as long as necessary. Obviously, for this approach to allow continuous transmission, the deicing system must completely remove ice from one array in, at most, the amount of time it takes to reach the tuning limit on the other array The design value for heating chosen to accomplish this was 1.64 Watts per square inch of surface area, which corresponds to approximately 500 kW per panel or 3 MW for the entire array. The Cutler deicing system has the capability of operating at up to four times this much heating. Note that deicing power significantly exceeds transmit power.

The topload panels are grade 6 electricity unit test fed by a four-wire cage made up of 1-inch copper cables. For transmitting, eight topload panel cables are all fed in parallel, one pair fed by each of the cage wires. For deicing. the topload cable pairs are fed in series with 60-Hz current. To provide the correct amount of heating with reasonable 60-Hz current, the topload cables need to have an appropriate resistance. For a given current, the heating in watts per square inch should be essentially the same for all cables. The deicing system is configured such that each 1-inch-diameter copper cable in the feed cage carries the full deicing current. This current is divided between two of the 1-inch-diameter topload conductors gas under 2 dollars. Since heating is proportional to current squared, these topload cables must have about four times the resistance of the feed cage cables to provide the same heating This was accomplished by making the 1-inch topload cables out of Calsun bronze, which has a conductivity equal to 19% of copper.

The heating in the 1.5-inch-diameter portion of the cables must be 50% greater than in the 1-inch diameter cable because the surface area is proportional to the diameter. Consequentially, the larger diameter sections must have more resistance. which is contrary to the normal variation of resistance with diameter. This was accomplished by making a composite cable known as hollow core by using hollow copper tubes in the inner portion and wires of a copper alloy called Everdure which has a conductivity equal to 7.75% of copper for the outer portion. Mechanical connections of the topload conductor cables are made using swage-type end fittings combined with clevis electricity year 6 shackles. Electrical connection is insured by crossing the mechanical connections with a 1-inch-diameter copper jumper cable clamped to the cables on both sides.