Nasa space place static electricity jokes

If you built a Newtonian Physics Machine, you have seen how we can discover laws of nature we see working every day. Humans understand these laws, first described by Isaac Newton 300 years ago. Now scientists have new tools to help them study how these well-known laws affect nature on the smallest and largest scales. And they also have new tools to discover laws of nature no one knows about yet.

Scientists have found a way to super-cool atoms by slowing them down using laser beams. Lasers are a particular kind of "well-organized" light. The light acts kind of like very fast moving particles with . . . you guessed it . . . momentum! The light particles slow down the atoms that come at them from the opposite direction. If the lasers are pointing toward the same spot from several different directions, the atoms can’t go much of anywhere.

Once the atoms are moving very slowly, it is much easier to use another kind of light, called microwaves, to measure the time it takes for the atom to go from one state to another. This time is so tiny, yet so constant, that if we can learn to measure it, we will be able to make clocks that are accurate to .000000000000001, or one-quadrillionth of a second!

For a couple of reasons, these experiments need to be done in space. They will be done on the International Space Station. In orbit around Earth, the Space Station and everything in it are in free fall, so the atoms in the experiments will not be disturbed by the effects of gravity. Also, the pull of Earth’s gravity really is less the farther from Earth one goes. As you will see, this fact is an important part of these experiments.

The Primary Atomic Reference Clock in Space (PARCS) experiment will put an advanced atomic clock on the International Space Station. This laser-cooled clock will be used to test a prediction of Einstein’s Theory of Relativity. This prediction says that clocks tick slower in strong gravity than they do in weak gravity.

The Space Station orbits at an altitude of 360 kilometers (220 miles), where gravity is slightly weaker than on Earth’s surface. (Remember, the astronauts feel weightless only because they are in free fall.) If Einstein’s theory is correct, a clock aboard the Space Station should tick faster than a clock on the surface of the Earth by about 1 second in every 10,000 years. It will take a very accurate clock to measure this tiny change!

Then, ask the person to look inside the Star Finder and pick one of the four visible constellations. This time, open and close the Star Finder once for each letter to spell out his choice. For example, if he chose "Lyra," you would open and close the Star Finder 4 times, once for each letter: L – Y – R – A.

For some of the months, not every part of the Star Finder may show a highlighted constellation for you to find. In this case, just try to find the constellation that is nearest to the part of the sky you picked. Or, just find any constellation!

A constellation is group of stars like a dot-to-dot puzzle. If you join the dots—stars, that is—and use lots of imagination, the picture would look like an object, animal, or person. For example, Orion is a group of stars that the Greeks thought looked like a giant hunter with a sword attached to his belt.

Other than making a pattern in Earth’s sky, these stars may not be related at all. For example, Alnitak, the star at the left side of Orion’s belt, is 817 light years away. (A light year is the distance light travels in one Earth year, almost 6 trillion miles!) Alnilam, the star in the middle of the belt, is 1340 light years away. And Mintaka at the right side of the belt is 916 light years away. Yet they all appear from Earth to have the same brightness.

Even the closest star is almost unimaginably far away. Because they are so far away, the shapes and positions of the constellations in Earth’s sky change very, very slowly. During one human lifetime, they change hardly at all. So, since humans first noticed the night sky they have navigated by the stars. Sailors have steered their ships by the stars. Even the Apollo astronauts going to the Moon had to know how to navigate by the stars in case their navigation instruments failed.

We see different views of the Universe from where we live as Earth makes its yearly trip around the solar system. That is why we have a different Star Finder for each month, as different constellations come into view. Also, as Earth rotates on its axis toward the east throughout the hours of the night, the whole sky seems to shift toward the west.

The Star Finder charts are for a latitude of 34° N, which is about as far north of the equator as Los Angeles, California. (Charts are from The Griffith Observer magazine.) The farther north you are, the more the constellations will be shifted south from the Star Finder charts. The Star Finder charts show the sky at about 10 PM for the first of the month, 9 PM for the middle of the month, and 8 PM for the last of the month. These are local standard times. For months with Daylight Savings Time, star chart times are an hour later.