Noise (electronics) – wikipedia b games 2


Shot noise in electronic devices results from unavoidable random statistical fluctuations of the electric current when the charge carriers (such as electrons) traverse a gap. If electrons flow across a barrier, then they have discrete arrival times. Those discrete arrivals exhibit shot noise. Typically, the barrier in a diode is used. [3] Shot noise is similar to the noise created by rain falling on a tin roof. The flow of rain may be relatively constant, but the individual raindrops arrive discretely.

Vacuum tubes exhibit shot noise because the electrons randomly leave the cathode and arrive at the anode (plate). A tube may not exhibit the full shot noise effect: the presence of a space charge tends to smooth out the arrival times (and thus reduce the randomness of the current).

Conductors and resistors typically do not exhibit shot noise because the electrons thermalize and move diffusively within the material; the electrons do not have discrete arrival times. Shot noise has been demonstrated in mesoscopic resistors when the size of the resistive element becomes shorter than the electron–phonon scattering length. [4] Flicker noise [ edit ]

Distant stars generate noise called cosmic noise. While these stars are too far away to individually affect terrestrial communications systems, their large number leads to appreciable collective effects. Cosmic noise has been observed in a range from 8 MHz to 1.43 GHz. Reduction of electromagnetic noise coupling [ edit ]

In many cases noise found on a signal in a circuit is unwanted. When creating a circuit, one usually wants a true output of what the circuit has accomplished. There are many different noise reduction techniques that can change a noisy altered output signal to a more theoretical output signal.

Faraday cage – A Faraday cage is a good way to reduce the overall noise in a complete circuit. The Faraday cage can be thought of as an enclosure that separates the complete circuit from outside power lines and any other signal that may alter the true signal. A Faraday cage will usually block out most electromagnetic and electrostatic noise.

• Capacitive coupling – A current through two resistors, or any other type of conductor, close to each other in a circuit can create unwanted capacitive coupling. If this happens an AC signal from one part of the circuit can be accidentally picked up in another part. The two resistors (conductors) act like a capacitor thus transferring AC signals. There may be other reasons for which capacitive coupling is wanted but then it would not be thought of as electronic noise.

• Ground loops – When grounding a circuit, it is important to avoid ground loops. Ground loops occur when there is a voltage difference between two ground connections. Since ground is thought of as 0 V, the presence of a voltage is undesirable at any point of a ground bus. If this is the case, it would not be a true ground. A good way to fix this is to bring all the ground wires to the same potential in a ground bus.

• Shielding cables – In general, using shielded cables to protect the wires from unwanted noise frequencies in a sensitive circuit is good practice. A shielded wire can be thought of as a small Faraday cage for a specific wire as it uses a plastic or rubber enclosing the true wire. Just outside the rubber/plastic covering is a conductive metal that intercepts any noise signal. Because the conductive metal is grounded, the noise signal runs straight to ground before ever getting to the true wire. It is important to ground the shield at only one end to avoid a ground loop on the shield.

• Twisted pair wiring – Twisting wires very tightly together in a circuit will dramatically reduce electromagnetic noise. Twisting the wires decreases the loop size in which a magnetic field can run through to produce a current between the wires. Even if the wires are twisted very tightly, there may still be small loops somewhere between them, but because they are twisted the magnetic field going through the smaller loops induces a current flowing in opposite ways in each wire and thus cancelling them out.

• Notch filters – Notch filters or band-rejection filters are essential when eliminating a specific noise frequency. For example, in most cases the power lines within a building run at 60 Hz. Sometimes a sensitive circuit will pick up this 60 Hz noise through some unwanted antenna (could be as simple as a wire in the circuit). Running the output through a notch filter at 60 Hz will amplify the desired signal without amplifying the 60 Hz noise. So in a sense the noise will be lost at the output of the filter.

The noise level in an electronic system is typically measured as an electrical power N in watts or dBm, a root mean square (RMS) voltage (identical to the noise standard deviation) in volts, dBμV or a mean squared error (MSE) in volts squared. Noise may also be characterized by its probability distribution and noise spectral density N 0( f) in watts per hertz.

A noise signal is typically considered as a linear addition to a useful information signal. Typical signal quality measures involving noise are signal-to-noise ratio (SNR or S/ N), signal-to-quantization noise ratio (SQNR) in analog-to-digital conversion and compression, peak signal-to-noise ratio (PSNR) in image and video coding, E b/ N 0 in digital transmission, carrier to noise ratio (CNR) before the detector in carrier-modulated systems, and noise figure in cascaded amplifiers.

Noise is a random process, characterized by stochastic properties such as its variance, distribution, and spectral density. The spectral distribution of noise can vary with frequency, so its power density is measured in watts per hertz (W/Hz). Since the power in a resistive element is proportional to the square of the voltage across it, noise voltage (density) can be described by taking the square root of the noise power density, resulting in volts per root hertz ( V / H z {\displaystyle \scriptstyle \mathrm {V} /{\sqrt {\mathrm {Hz} }}} ). Integrated circuit devices, such as operational amplifiers commonly quote equivalent input noise level in these terms (at room temperature).

Noise power is measured in watts or decibels (dB) relative to a standard power, usually indicated by adding a suffix after dB. Examples of electrical noise-level measurement units are dBu, dBm0, dBrn, dBrnC, and dBrn( f 1 − f 2), dBrn(144- line).

Noise levels are usually viewed in opposition to signal levels and so are often seen as part of a signal-to-noise ratio (SNR). Telecommunication systems strive to increase the ratio of signal level to noise level in order to effectively transmit data. In practice, if the transmitted signal falls below the level of the noise (often designated as the noise floor) in the system, data can no longer be decoded at the receiver. [ citation needed] Noise in telecommunication systems is a product of both internal and external sources to the system.

In a carrier-modulated passband analog communication system, a certain carrier-to-noise ratio (CNR) at the radio receiver input would result in a certain signal-to-noise ratio in the detected message signal. In a digital communications system, a certain E b/ N 0 (normalized signal-to-noise ratio) would result in a certain bit error rate. Dither [ edit ]

If the noise source is correlated with the signal, such as in the case of quantisation error, the intentional introduction of additional noise, called dither, can reduce overall noise in the bandwidth of interest. This technique allows retrieval of signals below the nominal detection threshold of an instrument. This is an example of stochastic resonance. See also [ edit ]