Pat’sblog on this day in math – may 22 arkla gas phone number

#

1903 Yves-André Rocard (Vannes, 22 May 1903 – 16 March 1992 in Paris) French mathematician and physicist who contributed to the development of the French atomic bomb and to the understanding of such diverse fields of research as semiconductors, seismology, and radio astronomy. During WW II, as Head of the Research Department of the Free French Naval Forces in England, he learnt about radars in England and interference from strong radio emission from the Sun. After the war, Rocard returned to France and proposed that France started a project to conduct radio astronomy. In the last part of his life he studied biomagnetism and dowsing which reduced his standing in the eyes of many of his colleagues. *TIS

He was born in Munich to a Jewish family. He fled from the Nazis to France, and then to Palestine. He went to Bristol University in 1945, gaining a Ph.D in 1951 with a dissertation entitled On Some Topics in the Theory of Representation of Groups and Individual Class Field Theory under the supervision of Hans Heilbronn. He was a lecturer at the University of Leicester and then at the Keele University, then in 1962 moved as reader to King’s College London where he worked until his retirement in 1981 when he moved to Robinson College, Cambridge.

1920 Thomas Gold (22 May 1920; 22 Jun 2004 at age 84) Austrian-British-American astronomer known for a steady-state theory of the universe, explaining pulsars, and naming the magnetosphere. In 1948, as a graduate student at Cambridge, he (together with Hermann Bondi and Fred Hoyle) proposed that, a continuous creation of matter in space is gradually forming new galaxies, maintaining the average number of galaxies in any part of the universe, despite its expansion. This is not accepted, as there is more evidence for the Big Bang theory. In 1967, Gold presented his theory on the nature of pulsars (objects in deep space that produce regularly pulsing radio waves). He suggested that they were rotating neutron stars – tiny, extraordinarily massive stars – which emit waves as they spin. *TIS

Schott attended the Würzburg Jesuit High School and entered the Order in 1627. During his studies in Würzburg one of his teachers was Athanasius Kircher. When the Jesuits fled before the approaching Swedish army in 1631,Schott went to Palermo to complete his studies. He stayed in Sicily 20 years as a teacher of mathematics, philosophy, moral theology at the Jesuit school in Palermo. In 1652 was sent to Rome as support in the scientific work of Kircher. He decided to publish Kircher’s work. In 1655, he returned as Professor in the Würzburg school, where he taught mathematics and physics. He was Hofmathematker and confessor of the Elector Johann Philipp von Schönborn who had just purchased the vacuum pump invented by Otto von Guericke and used at Magdburg.

1868 Julius Plücker (16 June 1801 – 22 May 1868) German mathematician and physicist whose work suggested the far-reaching principle of duality, which states the equivalence of certain related types of theorems. He also discovered that cathode rays (electron rays produced in a vacuum) are diverted from their path by a magnetic field, a principle vital to the development of modern electronic devices, such as television. At first alone and later with the German physicist Johann W. Hittorf, Plücker made many important discoveries in spectroscopy. Before Bunsen and Kirchhoff, he announced that spectral lines were characteristic for each chemical substance and this had value to chemical analysis. In 1862 he pointed out that the same element may exhibit different spectra at different temperatures. *TIS

1967 Josip Plemelj (December 11, 1873 – May 22, 1967) was a Slovene mathematician, whose main contributions were to the theory of analytic functions and the application of integral equations to potential theory. He was the first chancellor of the University of Ljubljana.*Wik

1974 Irmgard Flugge-Lotz (6 July 1903 – 22 May 1974)born in Hameln, Germany. Her father encouraged her in mathematics, but she chose engineering because “I wanted a life which would never be boring—a life in which new things would always occur.” She studied applied mathematics at the Technical University of Hanover and in 1929 she became a Doktor-Ingenieur, the equivalent of an American Ph.D. in Engineering. She made contributions to aerodynamics, control theory, and fluid mechanics. In 1960 she became full professor at Stanford. *WM

1991 Derrick Lehmer (February 23, 1905 – May 22, 1991) , one of the world’s best known prime number theorists, born in Berkeley, California. Before World War II, Lehmer invented a number of electromechanical sieves for finding prime numbers and made many important contributions in prime number theory throughout his life. Prime numbers are of interest in themselves as mathematical curiosities but are also of great importance to cryptography. The Computer Museum History Center has three Lehmer sieves in its permanent collection. Lehmer died in 1991.*CHM Lehmer’s peripatetic career as a number theorist, with he and his wife taking numerous types of work in the United States and abroad to support themselves during the Great Depression, fortuitously brought him into the center of research into early electronic computing.His father Derrick Norman Lehmer, known mainly as a pioneer in number theory computing, also made major contributions to combinatorial computing. *Wik

2009 Walter Ledermann (18 March 1911 in Berlin, Germany – 22 May 2009 in London, England) graduated from Berlin but was forced to leave Germany in 1933 to avoid Nazi persecution. He came to St Andrews and studied under Turnbull. He worked at Dundee and St Andrews until after World War II when he moved to Manchester and then to the University of Sussex. He is especially known for his work in homology, group theory and number theory. *SAU

2010 Martin Gardner (October 21, 1914 – May 22, 2010) died. Gardner more or less single-handedly sustained and nurtured interest in recreational mathematics in the U.S. for a large part of the 20th century. He is best known for his decades-long efforts in popular mathematics and science journalism, particularly through his "Mathematical Games" column in Scientific American. *Wik

It is said that Gardner "Turned children into mathematicians and mathematicians into children.".. For some of us he did each in turn. More than any classroom teacher I ever had, Martin Gardner shaped my mathematical interests. "For 35 years, he wrote Scientific American’s Mathematical Games column, educating and entertaining minds and launching the careers of generations of mathematicians"

Only two days before I learned of his death, I stood in the front yard of my Mother’s home in Fort Worth and told Alex, my sister’s grandson, aged 12, that if he wanted to nurture his curiosity for math and science he should find anything in the library by Martin Gardner and read it every year for the next ten years of his life, and each year, I promised, he would find something new in the reading.