Propensity score matching – wikipedia gaston yla agrupacion santa fe

##########

In the statistical analysis of observational data, propensity score matching ( PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. The technique was first published by Paul Rosenbaum and Donald Rubin electricity in india ppt in 1983. [1]

The possibility of bias arises because a difference in the average outcome between treated and untreated groups may be caused by a factor that predicts treatment rather than treatment itself. In randomized experiments, the randomization enables unbiased estimation of treatment effects; for each covariate, randomization implies that treatment-groups will be balanced on average, by the law of large numbers. Unfortunately, for observational gas x strips directions studies, the assignment of treatments to research subjects is typically not random. Matching attempts to mimic randomization by creating a sample of units that received the treatment that is comparable on all observed covariates to a sample of units that did not receive the treatment.

For example, one may be interested to know the consequences of smoking or the consequences of going to university. The people ‘treated’ are simply those—the smokers, or the university graduates—who in the course of everyday life undergo whatever it is that is being studied by the researcher. In both of these cases it is unfeasible (and perhaps unethical) to randomly assign people to smoking or a university education, so observational studies are required. The treatment effect estimated by simply comparing a particular outcome—rate of cancer or lifetime earnings—between those who smoked and did not smoke or attended university and did cheapest gas in texas not attend university would be biased by any factors that predict smoking or university attendance, respectively. PSM attempts to control for these differences to make the groups receiving treatment and not-treatment more comparable.

PSM is for cases of causal inference and simple selection bias in non-experimental electricity transmission and distribution costs settings in which: (i) few units in the non-treatment comparison group are comparable to the treatment units; and (ii) selecting a subset of comparison units similar to the treatment unit is difficult because units must be compared across a high-dimensional set of pretreatment characteristics.

In normal Matching we match on single characteristics that distinguish treatment and control groups (to try to make them more alike). But if the two groups do not have substantial overlap, then substantial error may be introduced: E.g., if only the worst cases from the untreated “comparison” group are compared to only the best cases from the treatment group, the result may be regression toward the electricity consumption mean which may make the comparison group look better or worse than reality.

Judea Pearl has shown that there exists a simple graphical test, called the back-door criterion, which detects the presence of confounding variables. To estimate the effect of treatment, the background variables X must block all back-door paths in the graph. This blocking can be done either by adding the confounding variable as a control in regression, or by matching on the confounding variable. [2] Advantages and disadvantages [ edit ]

Like other matching procedures, PSM estimates an average treatment effect from observational data. The key advantages of PSM were, at the time of its introduction, that by using a linear combination of covariates for a single score, it balances electricity resistance questions treatment and control groups on a large number of covariates without losing a large number of observations. If units in the treatment and control were balanced on a large number of covariates one at a time, large numbers of observations would be needed to overcome the dimensionality problem whereby the introduction of a new balancing covariate increases the minimum necessary number of observations in the sample gas definition physics geometrically.

One disadvantage of PSM is that it only accounts for observed (and observable) covariates. Factors that affect assignment to treatment and outcome but that cannot be observed cannot be accounted for in the matching procedure. [3] As the procedure only controls for observed variables, any hidden bias due to latent variables may remain after matching. [4] Another issue is that PSM requires large samples, with substantial overlap between treatment and control groups.

General concerns with matching have also been raised by Judea Pearl, who has argued that hidden bias may actually increase because matching on observed variables may unleash bias due to dormant unobserved confounders. Similarly, Pearl has argued that bias reduction can only be assured (asymptotically) by modelling the qualitative causal relationships between treatment, outcome, observed and unobserved covariates. [5] Confounding occurs when the experimenter is unable to control for alternative, non-causal explanations for an observed relationship between independent gas line jobs in wv and dependent variables. Such control should satisfy the backdoor criterion of Pearl. [2] Implementations in statistics packages [ edit ]

• SPSS: A dialog box for Propensity Score Matching is available from the IBM SPSS Statistics menu (Data/Propensity Score Matching), and allows the user to set the match tolerance, randomize case order when drawing samples, prioritize exact matches, sample with or without replacement, set a random seed, and maximize performance by increasing processing la gasolina daddy yankee mp3 speed and minimizing memory usage. The FUZZY Python procedure can also easily be added as an extension to the software through the Extensions dialog box. This procedure matches cases and controls by utilizing random draws from the controls, based on a specified set of key variables. The FUZZY command supports exact and fuzzy matching.