Scale model of the earth – activity – teachengineering gas outage

###########

The Earth is a sphere made of several layers: the inner core, outer core, mantle and crust. (Draw grade 9 electricity test and answers Figure 1 on the classroom board, or show students a suitable diagram or projected image.) The inner core, mantle and crust are solid, and the outer core is molten, or liquid. The crust is the thinnest layer of the Earth and is the layer on which we live. The inner core, outer core and mantle experience extremely high pressures and temperatures.

Most research about the Earth comes from studying the crust. Can you guess why? (Listen to student ideas.) Well, if we tried to travel all the way to the Earth’s inner core, we would be crushed into pieces from the very high pressure, and be burned up from the extreme heat! It is not a friendly environment for humans electricity worksheets. The solid crust floats along in plates very slowly on top of the mantle. The mantle is considered to be a solid. Some scientists describe it as having the consistency of warm wax or warm asphalt, or even silly putty. Even in high-pressure and high-temperature conditions, it can move (deform) only very slowly, perhaps a few centimeters a year. In the crust layer, sometimes the plates collide, or stick together, and when this happens, earthquakes occur.

Who can tell me what a scale gas station car wash model is? (Listen to student ideas.) A scale model is a smaller or larger version of an object. It is made to be the same as the original object but at a different size than the real object. You could think of a doll as a smaller scale model of a person. Or a toy car as a smaller scale model of a full-size car. A scale model has the same shape and components and gas key staking tool relative proportions as the actual object. It is measured to a scale that corresponds to the actual size. For example, perhaps 1 inch corresponds to 1 foot. Engineers sometimes build detailed scale models of objects to observe how parts fit together and/or move. Building scale models of the Earth can help engineers plan the routes and orbits of space flights, or design instruments that help predict earthquakes, or invent robots to travel into the different layers to collect data. In this activity, we will make a model of the Earth’s layers. For m gastrocnemius medialis our purposes, 1 centimeter will equal 1,000 kilometers.

The mantle consists o goshi technique of two regions. The upper region is part of the lithosphere; it is very rigid and exists as the bottom of our tectonic plates. The lower region is part of the asthenosphere and is referred to as fluid, which is not in reference to its phase of matter, but rather to the plasticity of the asthenosphere. Because the mantle exists under such extreme heat and pressure (~1,000° Celsius), it is ductile, like warm soft wax or asphalt, or silly putty, and is capable of moving and deforming at really slow rates of a few centimeters per year. The evidence that has convinced scientists that the mantle is solid comes from the study of seismic waves. We know that S waves are capable of moving through solids, but not through liquids. Scientists have recorded S waves gas urban dictionary moving through the mantle (evidence that it is solid), but not through the outer core (evidence that it is liquid).

Although j gastroenterol impact factor different people have different clay/Play-Doh® skills, they can achieve the same results. Create the outer core 3 cm in diameter using orange clay. Then, subtract clay from the outer core until you peel away enough clay the same size as the inner core (1 cm). Using the laws of addition, the red inner core plus the orange outer core that remains should equal 3 cm. Spread the gas exchange in the lungs happens by the process of remaining orange clay outer core out into a flat pancake. Wrap this around the inner core and roll the clay into a ball. Use the same idea to make the third and final layer.

By building a scale model of the Earth, an engineer can design instruments that help predict earthquakes or think about how to invent robots to travel into the gas mask art different layers. Why else might you want to create a scale model of the Earth? (Possible answers: To understand the size of the Earth in relation to other planets, to model space flight orbits involving the Earth, to search for locations to access natural gas, oil and geothermal energy, to predict how the Earth might change over time.)

Journey to the Center of the Earth: Show students various newspaper articles. Point out gas utility worker the typical newspaper article format and components, such as catchy headlines, short with relevant information only, most important information first. Tell students that they are engineers who have just invented a machine to take them to the core of the Earth. Their task is to write newspaper articles describing their discoveries as they travel through the layers of the Earth. Remind them to use descriptive words so the reader can visualize each layer of the Earth.