The fukushima nuclear meltdown, eight years on – cnet – lebanon news – أخبار لبنان f gas regulations r22


My hand clumsily holds a reporter’s notebook and pen electricity laws physics. I’m wearing white Tyvek coveralls over my trousers, shirt and head, which is capped off by a bright yellow hard hat. I’m also wearing two layers of socks and heavy rubber boots. Walking around isn’t easy and feels like an awkward second — and third, and fourth — skin. The claustrophobic gear seems straight out of a thriller about a zombie apocalypse.

Unit 3 was one of three reactors crippled on March 11, 2011, after a 9.0 earthquake struck 80 miles off the coast of Japan. (Units 4, 5 and 6 at Daiichi weren’t operating at the time.) The temblor shook so violently it shifted the Earth’s axis by nearly 4 inches and moved the coast of Japan by 8 feet. Eleven reactors at four nuclear power plants throughout the region were operating at the time. All shut down automatically. All reported no significant damage.

At the far end of the room, there’s an enormous orange platform known as a fuel-handling machine. It has four giant metal legs that taper down, giving the structure a sort of animalistic look. Thin steel cables suspend a chrome robot in the center of the frame. The robot, largely obscured by a pink plastic wrapper, is equipped with so-called manipulators that can cut rubble and grab fuel rods. The robot gas out game commercial will eventually pull radioactive wreckage out of a 39-foot-deep pool in the center of the room.

The Japanese government estimates it will cost $75.7 billion and take 40 years to fully decommission and tear down the facility. The Japan Atomic Energy Agency even built a research center nearby to mock up conditions inside the power plant, allowing experts from around the country to try out new robot designs for clearing away the wreckage.

Roughly 60 feet below me, radiation is being emitted at 1 sievert electricity trading hubs per hour. A single dose at that level is enough to cause radiation sickness such as nausea, vomiting and hemorrhaging. One dose of 5 sieverts an hour would kill about half of those exposed to it within a month, while exposure to 10 sieverts in an hour would be fatal within weeks.

The reactors’ hostile environments brought most of the early robots to their figurative knees: High gamma radiation levels scrambled the electrons within the semiconductors serving as the robots’ brains — ruling out machines that are too sophisticated. Autonomous robots would either shut down or get snared by misshapen obstacles in unexpected places.

Consider the Scorpion, a 24-inch-long robot that could curl up its camera-mounted tail for better viewing angles. In December 2016, workers cut out a hole in the PCV of Unit 2 for the Scorpion to enter. Tepco hoped the robot, with its two la gas cameras and sensors to gauge radiation levels and temperatures, would finally provide a glimpse inside the reactor.

Toshiba returned to the heavily contaminated Unit 2 in January 2018 with a new machine carrying one camera that could pan and tilt and another attached to the tip of a telescopic guide pipe, offering a bird’s-eye view. Once that machine reached the heart of the PCV, workers remotely lowered the pan-and-tilt camera an additional seven and a half feet to take photos.

Hushed conversations echo from around the off-white control room in a building 350 meters (about 1,150 feet) from Unit 2. Bare ceiling pipes, office chairs and racks of computer equipment break up the otherwise sparse space. There’s a quiet intensity from the nearly two dozen men. All wear jumpsuits color-coded to their company gas vs electric water heater savings affiliations, like military officers preparing for war.

Two special chairs have been outfitted with joysticks at the end of each armrest. A Tepco operator sits in one chair controlling a specially built Brokk 400D, a big blue bot that looks like a miniature excavator running on two large tank treads. He stares intently at four monitors giving him a real-time feed of what’s happening inside the Unit 2 reactor.

But these robots aren’t the standard-issue versions. Instead of its usual bucket claw, this Brokk 400D has a sensor to look for gamma ray hotspots. The Packbot comes with a camera to give the operator extra viewing angles. Both robots have been kitted with a lead-lined communication box. Fiber-optic lines connect that box to a special room next to the reactor room where workers use gas x strips review Wi-Fi to relay info to the control room.

This is only the second such mission, and it’s strictly for reconnaissance. The two robots are on top of the Unit 2 reactor — not inside the PCV — looking for radiation hotspots. Tepco hopes the information beamed back from the robots will eventually help it remove large chunks of fuel and wreckage from the top section of the reactor, making it possible for Unit 2 to get its own dome cover.

James and I are at the Naraha Center for Remote Control Technology Development, about a half hour’s drive south of the crippled nuclear plant. I’m wearing special 3D glasses and staring at a projection of a virtual mockup of the Daiichi facility. I navigate using a special one-handed controller that looks like a cross electricity and magnetism worksheets high school between a power drill and phaser from Star Trek, which allows me to move around and grab objects.

There’s a full-scale replica of a one-eighth slice of the suppression chamber, a massive tube that looks like a donut wrapped around the base of the PCV. Even the small sliver of the structure towers over us. A suppression chamber stores much of the contaminated water from the PCV, and researchers are testing if remotely controlled robots can patch leaks from inside a chamber.

Other areas include a large pool for testing robots underwater, and stairs that can be moved and adjusted to re-create 3 gases that cause global warming a range of challenges that robots — which tend to struggle with the basic tasks of going up and down steps — will likely encounter. There’s also an obstacle course for humans training to operate robots through tight pathways.

That’s also true for the Robot Test Field, an hour’s drive north of Naraha in Minamisoma, which sometime this year will include mock bridges, tunnels and other obstacles that drones can maneuver around. And in 2020, the area will host the World Robot Summit, with many of the exhibitions focused on disaster response and infrastructure support. The government of Fukushima Prefecture hopes companies from around the world will eventually come here to test their drones.