Understanding vacuum cleaner specifications vacuum suction power power company near me

#########

The vacuum motor consists of electrical components attached to a fan or multiple fans. gasco abu dhabi When the fans spin, a partial vacuum is created and the pressure inside the vacuum cleaner drops below the ambient (or existing) air pressure in the room. Because air pressure is higher outside the vacuum cleaner than inside, air rushes through the vacuum cleaner.

So, it is easy to see that the vacuum motor is the heart of a vacuum cleaner. After all, the more powerful the motor, the greater the pressure differential and therefore the more vacuum suction power and airflow, right? And it is for this reason that most of the specifications you see concerning cleaning ability relate either directly or indirectly to the motor.

Comparing machines rated in amps with those rated in watts is not an exact comparison because manufacturers that are using watt ratings typically rate the motor only while amperage ratings use the total electrical consumption of the vacuum cleaner including the motor in the power nozzle (the motorized revolving brush cleaning head), light bulb, etc.

This is because the power nozzle motor consumes 1.5 amps, the bulb uses additional amperage and so on. So, if we subtract the amperage used by the power nozzle motor from our 12 amp machine, we come up with 10.5 amps for the motor and light bulb. In this example, the two motors both have ratings of very close to 10 amps, and therefore, equivalent motor input power.

A very common vacuum cleaner specification is amps. The amperage rating designates the maximum amount of electrical current used by all of the vacuum cleaner’s electrical components when operating. The biggest consumer of electrical current will be the vacuum motor, but the amperage rating includes all of the electrical components, including the vacuum motor, the power nozzle motor, the light bulb, etc.

The maximum amp "draw," (the number of amps the vacuum cleaner uses when running) allowed for any appliance that plugs into a standard household outlet is 12. Therefore, if you see amperage ratings above 12, read the fine print, as they are not true amperage specifications but some other manufacturer developed "performance rating" designed to create the impression of a more powerful vacuum cleaner.

Although amperage refers to electricity consumption and not power or cleaning ability per se, it can be used to compare the input power of one vacuum cleaner to another. This is because while input power is measured in watts, amps are converted into watts by multiplying by volts. Since volts are constant at 120, amps represent a valid comparison of motor input power.

Often referred to as "Peak Horsepower" these ratings were obtained by removing the fans from the vacuum motor and subjecting it to the maximum load possible before the motor burned out. gas in oil car Then, a complex formula was applied to come up with a Peak Horsepower rating. Again, this specification is meaningless in terms of evaluating the cleaning ability of a vacuum cleaner.

As we have discussed, typical vacuum power specifications such as watts and amps measure the vacuum cleaner’s input power. Central vacuum makers, as well as some other vacuum cleaner manufacturers, have been using the air watts specification to attempt to rate the vacuum cleaner’s output rather than input power. Air watts are calculated using the formula, (Air Flow (in CFM) x Vacuum (in inches of water lift))/8.5 = Air Watts.

Vacuum airflow is by far the most important specification in terms of determining the cleaning ability of a vacuum cleaner. Measured in cubic feet per minute (CFM), it is the force of this airflow across a surface that picks up the dirt and moves it to the dust bag or container. Therefore, the more airflow, the better the cleaning ability of the vacuum cleaner.

Airflow is generally measured through the vacuum cleaner without hose or attachments connected. gas 87 89 93 Because of this, there are several factors that can affect actual airflow, including turbulence in the hose and wands, restrictions on airflow where the cleaning tool meets the floor or other surface, increased resistance due to the bag filling with dirt, as well as filter loading.

The first comparison is watts to watts motor input power. Ideally, the machines being compared will all have motor input power specified in watts for a simple, direct comparison. If one machine is rated in amps and the other in watts, a conversion of the amps specification to watts makes comparison possible but is "apples to apples" only if the motor amps alone are used for this comparison.

The second comparison will be water lift (sealed suction). This is a good specification to compare how well the vacuum cleaner will perform as the bag fills and the filters load, and is especially relevant when choosing high filtration or HEPA filtration vacuum cleaners. gas 4 less It also provides some idea of how vacuum cleaners compare in terms of picking up heavier soils such as sand, grit and so on.

The second basic design is one that features a by-pass motor where unfiltered air does not go through the motor. In uprights with this design, only filtered or completely clean room air passes through the motor in order to cool it. By-pass uprights will usually provide airflow but not water lift specifications and a high performing upright will offer 60 CFM or better.

Filtration is very important in terms of cleaning ability because HEPA or other advanced filtration increases the resistance within the vacuum cleaner. Therefore, it is easier for a vacuum cleaner with normal filtration to accomplish higher airflow ratings. In fact, the challenge of coping with higher resistance is one of the reasons that HEPA filtration vacuum cleaners can cost more.

Therefore, explore the type of cleaning tools that make sense for your home. If you have lots of carpet or difficult soils such as pet hair, choose an upright or a power team with a motorized power nozzle. If you have furniture that is difficult to get under, be sure your vacuum cleaner has a low enough profile cleaning nozzle to reach these areas and so on.

The capacity of your vacuum cleaner has a role in terms of maintaining high levels of cleaning ability. 7 gas station As we saw above, the larger the dust bag, the better the airflow, and therefore, cleaning ability. All other things being equal, a full-sized vacuum cleaner will offer better cleaning ability, especially as the dust bag or container fills.

The amount of noise a vacuum makes while operating is rated in decibels (dB). To give you some idea, a conversation at home is rated at 50dB, a garbage disposal at 80 dB and a motorcycle or lawnmower at 100 dB. Extremely quiet vacuum cleaners can operate at decibel levels in the mid-sixties while cleaners in the 70-77 dB range are still very quiet compared to the vacuum cleaner you grew up with.

Consider your cleaning situation and be sure that the vacuum cleaner you choose gives you everything to make the chore of vacuuming as easy as possible. Does it feature a cord rewind, variable speed controls, on-board tool storage, height adjustable wands, an adequate cleaning radius, the proper tools for your flooring such as a soft brush for your slate entry tiles and so on.