Wb5rvz – home page la gas prices now

##########

This kit is an SDR Transceiver that follows in the very successful line of RXTX Softrocks, the most recent being the RXTX V6.3 multi-band transceiver. The Ensemble kit is essentially the RXTX V6.3, but with its band-specific components fixed and predetermined (as opposed to the plug-in daughtrer boards for these functions in the RXTX V6.3). static electricity images The kit, therefore, is not compatible with the Mobo series of add-ons, since they depend upon the plug and socket arrangements of the RXTX V6.3. The kit comes in five versions, corresponding to five "super-bands":

Once you have decided on your band choice, you can select the band by clicking on the "Bands" tab at the top of any page on the Ensemble RXTX website. This will customize these notes (and theid component values) for the selected band option. The band selection will hold for the duration of your "session" on the website and while in the Ensemble RXTX portion. Get in the habit of checking the header on each page to be sure your band selection is still in effect.

In each version, the radio has complete frequency agility within the "super-band" (thanks to the reliable Si570 programmable oscillator), limited only by the fixed/installed band-specific components. This means that, for example, with the 30/20/17m version, the user can operate all modes on all three of those ham bands, anywhere in those bands, subject only to the limitations of their license and the SDR software being used. In fact, the kit can also receive any HF signals within the installed "super-band".

The kit is offered with all of the parts necessary to build it for any one of the five possible versions. Consequently, the builder will always have some parts "left-over" at the end of the build. gas after eating bread These documents contain band-specific Bill of Materials listings for each version (in addition to the Bill of Materials for the parts of the radio that are not band-specific.

The function of the local oscillator is to produce a signal whose frequency is four times the desired "center frequency" of the radio. The "center frequency", plus the sound card in the PC, will determine the width of the "chunk of spectrum" one will see in the RX (and TX) display on the PC’s screen – i.e., the available, visible bandwidth. This bandwidth is represented as a number of kHz either side of the "center frequency. That number of kHz is half of the sound card’s sampling rate. Normal sampling rates are 48 kHz, 96 kHz, and 192 kHz (corresponding to bandwidths of the "center frequency" plus or minus 24 kHz, 48 kHz, and 96 kHz, respectively. The sampling rate of the sound card is directly proportional to the cost of the sound card – the higher the rate, the higher the cost.

The transceiver has a common antenna terminal and RF path which is switched between the RX Bandpass filters (default) and the TX low-pass filters, via circuitry in the RF I/O and Switching Stage. The switching is performed in response to the /PTT signal from the microcontroller, as selected by the SDR program on the PC. In the RX chain, the incoming RF is band-pass filtered in T5/L4/C39, with the RF output at T5’s secondaries in antiphase.

The antiphase RF signals out of T5 are coupled into the RX Mixer Stage via R53 and R54. The mixer chip (actually a commutating switch, clocked by the two QSD Clock signals from the Dividers Stage) outputs the product and difference signals of the incoming RF against the QSD clock. gas up asheville The effect is to down-convert the incoming RF into its quadrature analogues at frequencies ranging from 0 to roughly 100 kHz.

The PC’s sound card performs a conversion of the two analog signals ("I and Q") to a digital representation, which is then operated upon by modules of the SDR program to perform the many "radio" functions, such as demodulation, filtering, AGC, etc., that are expected of a fine receiver. To do this, it absolutely essential that the soundcard being used supports STEREO input. The sampling rate, quality and specs of the soundcard will determine whether and how well the PC can work signals whose frequency is either sode of the center frequency. gas finder map Common sound card sampling ratesfor this bandwidth are 48 kHZ, 96 kHz, and 192 kHz. These each correspond to the ability to support SDR processing of "chunks" of bandwidth of 48 kHz, 96 kHz, and 192 kHz, each chunk centered on the center frequency (CF), with "wings" on either side of the CF that are one-half the sampling rate in width.

The transmit functionality is essentially the reverse of the RX functionality. In the PC, rather than demodulating input I and Q signals as in the RX, the PC modulates the digital signals (from the microphone or a keyer module. for example) into analog I and Q (infra) audio STEREO outputs, typically output to the line-out jack on the soundcard. The I and Q signals at the line-out are in quadrature (identical in all respects save phase) and appear at stereo jack J3. There are fed to the TX OpAmp Stage. This unitary gain stage translates the I and Q signals into four equal signals, at 0, 90, 180, and 270 degrees of phase.

These four signals from the TX Opamp Stage are coupled via R25-R28 to the TX Mixer Stage. Just as the RX Mixers "mixed" incoming RF with the QSD clock (center frequency) signals to produce (infra)audio signals, the TX Mixer does the reverse, "mixing" modulated (infra) audio signals with the QSE RF clock signals to produce up-converted RF outputs that are analogues of the TX I and Q inputs. This modulated RF output of the TX Mixer (aka "Quadrature Sampling Exciter", or "QSE") is coupled via T2, C20, L1, and C21 to the Driver/PA stage.

The Driver/PA stage shapes and amplifies the modulated RF output from the TX Mixer stage and feeds the result to the antenna path as switched by the PTT switching circuitry. The switching circuitry activates the Driver/PA stage and forces a S12 line to high (approximately 12 Vdc), to permit switching an external amplifier. tropico 5 electricity This stage will deliver approximately one watt of output into a 50 ohm load.