Wyss institute’s rapid zika test named _best of what’s new_ by popular science magazine _ eurekalert! science news

(BOSTON) – A rapid Zika test, developed by an international, multi-institutional team of researchers led by synthetic biologist James Collins, Ph.D., at Harvard University’s Wyss Institute for Biologically Inspired Engineering, has today been named a 2016 “Best of What’s New” awards winner by Popular Science magazine in the Health category.

The “Best of What’s New”, currently in its 29th year, annually honors 100 revolutionary products and technologies that are transforming the world across a range of award categories: Aerospace, Auto, Engineering, Entertainment, Gadgets, General Innovation, Health, Home, Recreation, Security, and Software. Electricity resistance questions The “Best of What’s New” Health category, in which the Zika test technology is a winner, recognizes medical treatments and devices that could “solve an unsolvable problem” and utilize entirely new ideas and functions.

“We are tremendously honored to receive a ‘Best of What’s New’ award for our paper-based Zika diagnostic,” said Collins, who is a Wyss Institute Core Faculty member, and Termeer Professor of Medical Engineering & Science and Professor of Biological Engineering at the Massachusetts Institute of Technology (MIT)’s Department of Biological Engineering. Z gas el salvador “Using synthetic biology, we have developed an inexpensive test that could diagnose a patient with Zika in the field within a few hours, which we hope could be used to contain Zika or other viral outbreaks.”

To build the Zika test, Collins brought together a team including Wyss Institute scientists as well as collaborators from MIT, the Broad Institute of Harvard and MIT, Harvard Medical School (HMS), University of Toronto, Arizona State University (ASU), University of Wisconsin-Madison (UW-Madison), Boston University (BU), Cornell University, and Addgene. Electricity symbols and units They envisioned a new class of diagnostic that is inexpensive and rapidly deployable to screen blood, urine, or saliva samples for Zika or any other RNA virus including Ebola, SARS, measles, influenza, hepatitis C, and West Nile fever.

With that goal in mind, Collins’ team has developed a diagnostic system that does not require refrigeration or electricity. B games car They freeze-dry synthetic gene circuits onto paper discs. Electricity sources in canada These biomolecular circuits are activated when the paper is rehydrated with a droplet of sample fluid; the disc changes color to indicate a positive result for Zika virus, similar to the visual readout of a home pregnancy test. Gas zone To validate their rapid Zika test, the team successfully identified strain-specific Zika in blood samples from infected monkeys as well in laboratory cell cultures infected with the virus.

More recently, working with collaborators in Ecuador, the test has been used to accurately diagnose presence of Zika virus in patient samples. V gashi 2015 The ability to discern between strains of Zika is especially important for diagnosing the American strain of the virus, which is associated with rare but severe neurological symptoms including fetal microcephaly and Guillain-Barre´ syndrome. Gas ark The “Best of What’s New” judging criteria include the significance of the innovation, the quality of the design and its originality, and the ambition and scope of the project.

“The cell-free, paper-based tests developed by Jim Collins and his team provide a low-cost, stable platform for long-term storage and fast deployment of diagnostics, anywhere in the world, where they can rapidly diagnose the presence and identity of rapidly emerging viral pathogens. Pictures electricity pylons It is fantastic to have yet another recognition for the team’s transformative work,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Boston Children’s Hospital, and also Professor of Bioengineering at the Harvard John A. Electricity outage houston tx Paulson School of Engineering and Applied Sciences.

In addition to Collins, other scientists on the Zika test development team include: Keith Pardee (UToronto and Wyss); Alexander Green (ASU); Melissa K. O gastronomo buffet Takahashi (MIT); Dana Braff (Wyss, MIT, and Boston University); Guillaume Lambert (Wyss Institute and Cornell); Jeong Wook Lee (Wyss); Tom Ferrante (Wyss); Duo Ma (ASU); Nina Donghia (Wyss); Melina Fan (Addgene); Nichole Daringer (MIT); Irene Bosch (MIT); Dawn Dudley (UW-Madison); David O’Connor (UW-Madison); and Lee Gehrke (MIT, HMS).

The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Electricity for refrigeration heating and air conditioning 9th edition pdf Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. Gas dryer vs electric dryer hookups The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard’s Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.